{"title":"表面等离子体共振条件下金属纳米粒子系综吸收超短激光脉冲的动力学理论","authors":"A. Biliuk, O. Semchuk, O. Havryliuk","doi":"10.15407/hftp13.02.190","DOIUrl":null,"url":null,"abstract":"This paper presents a theory that allows one to calculate the energy absorbed by spheroidal metal nanoparticles when irradiated by ultrashort laser pulses of different duration in the region of surface plasmon resonance. Simple analytical expressions are obtained to calculate the absorption energy dependent on the frequency of carrier laser wave, on the pulse duration, and on the ratio between the axes of the ellipsoids. It is shown that at the frequency of the carrier (laser) wave, which coincides with that of the surface plasmon, the maximum absorption is observed for spherical nanoparticles. As the carrier frequency deviates from the surface plasmon one, two maxima appear in the absorption spectrum, dependent on the ratio of spheroidal axes: one corresponds to the elongated particles and the other to the flattened ones.","PeriodicalId":296392,"journal":{"name":"Himia, Fizika ta Tehnologia Poverhni","volume":"68 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance\",\"authors\":\"A. Biliuk, O. Semchuk, O. Havryliuk\",\"doi\":\"10.15407/hftp13.02.190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a theory that allows one to calculate the energy absorbed by spheroidal metal nanoparticles when irradiated by ultrashort laser pulses of different duration in the region of surface plasmon resonance. Simple analytical expressions are obtained to calculate the absorption energy dependent on the frequency of carrier laser wave, on the pulse duration, and on the ratio between the axes of the ellipsoids. It is shown that at the frequency of the carrier (laser) wave, which coincides with that of the surface plasmon, the maximum absorption is observed for spherical nanoparticles. As the carrier frequency deviates from the surface plasmon one, two maxima appear in the absorption spectrum, dependent on the ratio of spheroidal axes: one corresponds to the elongated particles and the other to the flattened ones.\",\"PeriodicalId\":296392,\"journal\":{\"name\":\"Himia, Fizika ta Tehnologia Poverhni\",\"volume\":\"68 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Himia, Fizika ta Tehnologia Poverhni\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/hftp13.02.190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Himia, Fizika ta Tehnologia Poverhni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/hftp13.02.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance
This paper presents a theory that allows one to calculate the energy absorbed by spheroidal metal nanoparticles when irradiated by ultrashort laser pulses of different duration in the region of surface plasmon resonance. Simple analytical expressions are obtained to calculate the absorption energy dependent on the frequency of carrier laser wave, on the pulse duration, and on the ratio between the axes of the ellipsoids. It is shown that at the frequency of the carrier (laser) wave, which coincides with that of the surface plasmon, the maximum absorption is observed for spherical nanoparticles. As the carrier frequency deviates from the surface plasmon one, two maxima appear in the absorption spectrum, dependent on the ratio of spheroidal axes: one corresponds to the elongated particles and the other to the flattened ones.