CTR估计的特征选择方法评价

Luis Miralles Pechuán, Hiram Ponce, María de Lourdes Martínez-Villaseñor
{"title":"CTR估计的特征选择方法评价","authors":"Luis Miralles Pechuán, Hiram Ponce, María de Lourdes Martínez-Villaseñor","doi":"10.1109/MICAI-2016.2016.00017","DOIUrl":null,"url":null,"abstract":"The most widespread payment model in online advertising is Cost-per-click (CPC). In this model the advertisers pay each time that a user generates a click. In order to enhance the income of CPC Advertising Networks, it is necessary to give priority to the most profitable adverts. The most important factor in the profitability of an advert is Click-through-rate (CTR), which is the probability that a user generates a click in a given advert. In this paper we find which feature selection method between PCA, RFE, Gain ratio and NSGA-II is better suited, or if otherwise, the machine learning classification methods work best without any feature selection method.","PeriodicalId":405503,"journal":{"name":"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Selection Methods Evaluation for CTR Estimation\",\"authors\":\"Luis Miralles Pechuán, Hiram Ponce, María de Lourdes Martínez-Villaseñor\",\"doi\":\"10.1109/MICAI-2016.2016.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most widespread payment model in online advertising is Cost-per-click (CPC). In this model the advertisers pay each time that a user generates a click. In order to enhance the income of CPC Advertising Networks, it is necessary to give priority to the most profitable adverts. The most important factor in the profitability of an advert is Click-through-rate (CTR), which is the probability that a user generates a click in a given advert. In this paper we find which feature selection method between PCA, RFE, Gain ratio and NSGA-II is better suited, or if otherwise, the machine learning classification methods work best without any feature selection method.\",\"PeriodicalId\":405503,\"journal\":{\"name\":\"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI-2016.2016.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI-2016.2016.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在线广告中最普遍的付费模式是按点击付费(CPC)。在这种模式下,广告客户为用户每次产生的点击付费。为了提高CPC广告网络的收入,必须优先考虑最赚钱的广告。广告盈利能力中最重要的因素是点击率(CTR),即用户在给定广告中产生点击的概率。在本文中,我们发现在PCA、RFE、Gain ratio和NSGA-II之间哪种特征选择方法更适合,或者如果不适合,机器学习分类方法在没有任何特征选择方法的情况下工作得最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection Methods Evaluation for CTR Estimation
The most widespread payment model in online advertising is Cost-per-click (CPC). In this model the advertisers pay each time that a user generates a click. In order to enhance the income of CPC Advertising Networks, it is necessary to give priority to the most profitable adverts. The most important factor in the profitability of an advert is Click-through-rate (CTR), which is the probability that a user generates a click in a given advert. In this paper we find which feature selection method between PCA, RFE, Gain ratio and NSGA-II is better suited, or if otherwise, the machine learning classification methods work best without any feature selection method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信