基于机器学习方法的SARS-CoV-2感染肺部病变语义分割与量化

M. S. Artemyev, A. A. Smirnov
{"title":"基于机器学习方法的SARS-CoV-2感染肺部病变语义分割与量化","authors":"M. S. Artemyev, A. A. Smirnov","doi":"10.1063/5.0088698","DOIUrl":null,"url":null,"abstract":"Segmentation of chest and lung images plays a crucial role in supporting disease diagnosis, treatment planning, and surgical navigation. For accurate segmentation of lung images, this paper proposes a CT image segmentation algorithm based on classical methods and neural networks using machine learning methods. The neural network and machine learning approach has been thoroughly analyzed in comparison with standard segmentation methods (threshold detection, K-means clustering, histogram-based approach, and boundary detection). The experimental results show that the proposed algorithm is highly competitive. © 2022 Author(s).","PeriodicalId":339823,"journal":{"name":"THE VIII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic segmentation and quantification of lung lesions caused by SARS-CoV-2 infection by machine learning methods\",\"authors\":\"M. S. Artemyev, A. A. Smirnov\",\"doi\":\"10.1063/5.0088698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of chest and lung images plays a crucial role in supporting disease diagnosis, treatment planning, and surgical navigation. For accurate segmentation of lung images, this paper proposes a CT image segmentation algorithm based on classical methods and neural networks using machine learning methods. The neural network and machine learning approach has been thoroughly analyzed in comparison with standard segmentation methods (threshold detection, K-means clustering, histogram-based approach, and boundary detection). The experimental results show that the proposed algorithm is highly competitive. © 2022 Author(s).\",\"PeriodicalId\":339823,\"journal\":{\"name\":\"THE VIII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE VIII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0088698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE VIII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0088698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胸部和肺部图像的分割在支持疾病诊断,治疗计划和手术导航中起着至关重要的作用。为了对肺部图像进行精确分割,本文提出了一种基于经典方法和神经网络的CT图像分割算法。与标准分割方法(阈值检测、k均值聚类、基于直方图的方法和边界检测)相比,对神经网络和机器学习方法进行了彻底的分析。实验结果表明,该算法具有较强的竞争力。©2022作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic segmentation and quantification of lung lesions caused by SARS-CoV-2 infection by machine learning methods
Segmentation of chest and lung images plays a crucial role in supporting disease diagnosis, treatment planning, and surgical navigation. For accurate segmentation of lung images, this paper proposes a CT image segmentation algorithm based on classical methods and neural networks using machine learning methods. The neural network and machine learning approach has been thoroughly analyzed in comparison with standard segmentation methods (threshold detection, K-means clustering, histogram-based approach, and boundary detection). The experimental results show that the proposed algorithm is highly competitive. © 2022 Author(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信