{"title":"使用MapReduce的文档相似度自连接","authors":"R. Baraglia, G. D. F. Morales, C. Lucchese","doi":"10.1109/ICDM.2010.70","DOIUrl":null,"url":null,"abstract":"iven a collection of objects, the Similarity Self-Join problem requires to discover all those pairs of objects whose similarity is above a user defined threshold. In this paper we focus on document collections, which are characterized by a sparseness that allows effective pruning strategies. Our contribution is a new parallel algorithm within the MapReduce framework. This work borrows from the state of the art in serial algorithms for similarity join and MapReduce-based techniques for set-similarity join. The proposed algorithm shows that it is possible to leverage a distributed file system to support communication patterns that do not naturally fit the MapReduce framework. Scalability is achieved by introducing a partitioning strategy able to overcome memory bottlenecks. Experimental evidence on real world data shows that our algorithm outperforms the state of the art by a factor 4.5.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Document Similarity Self-Join with MapReduce\",\"authors\":\"R. Baraglia, G. D. F. Morales, C. Lucchese\",\"doi\":\"10.1109/ICDM.2010.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"iven a collection of objects, the Similarity Self-Join problem requires to discover all those pairs of objects whose similarity is above a user defined threshold. In this paper we focus on document collections, which are characterized by a sparseness that allows effective pruning strategies. Our contribution is a new parallel algorithm within the MapReduce framework. This work borrows from the state of the art in serial algorithms for similarity join and MapReduce-based techniques for set-similarity join. The proposed algorithm shows that it is possible to leverage a distributed file system to support communication patterns that do not naturally fit the MapReduce framework. Scalability is achieved by introducing a partitioning strategy able to overcome memory bottlenecks. Experimental evidence on real world data shows that our algorithm outperforms the state of the art by a factor 4.5.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
iven a collection of objects, the Similarity Self-Join problem requires to discover all those pairs of objects whose similarity is above a user defined threshold. In this paper we focus on document collections, which are characterized by a sparseness that allows effective pruning strategies. Our contribution is a new parallel algorithm within the MapReduce framework. This work borrows from the state of the art in serial algorithms for similarity join and MapReduce-based techniques for set-similarity join. The proposed algorithm shows that it is possible to leverage a distributed file system to support communication patterns that do not naturally fit the MapReduce framework. Scalability is achieved by introducing a partitioning strategy able to overcome memory bottlenecks. Experimental evidence on real world data shows that our algorithm outperforms the state of the art by a factor 4.5.