潮流预测是基于时间序列的人工神经网络规划和数据预处理的结果

F. Schäfer, J. Menke, M. Braun
{"title":"潮流预测是基于时间序列的人工神经网络规划和数据预处理的结果","authors":"F. Schäfer, J. Menke, M. Braun","doi":"10.1049/OAP-CIRED.2021.0026","DOIUrl":null,"url":null,"abstract":"Time-series-based analysis of power systems requires long simulation times if the annual simulation of N–1 cases are to be analysed. Artificial neural networks can be trained to predict bus voltage magnitudes and line loadings to shorten these simulation times. In this study, the authors show how to reduce prediction errors by applying different data pre-processing methods including sampling methods, feature selection strategies, and scaling techniques. Results are shown for four realistic benchmark grids. The authors show that the maximum prediction error can be reduced by >30% when using pre-processing methods.","PeriodicalId":405107,"journal":{"name":"CIRED - Open Access Proceedings Journal","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of power flow results in time-series-based planning with artificial neural networks and data pre-processing\",\"authors\":\"F. Schäfer, J. Menke, M. Braun\",\"doi\":\"10.1049/OAP-CIRED.2021.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-series-based analysis of power systems requires long simulation times if the annual simulation of N–1 cases are to be analysed. Artificial neural networks can be trained to predict bus voltage magnitudes and line loadings to shorten these simulation times. In this study, the authors show how to reduce prediction errors by applying different data pre-processing methods including sampling methods, feature selection strategies, and scaling techniques. Results are shown for four realistic benchmark grids. The authors show that the maximum prediction error can be reduced by >30% when using pre-processing methods.\",\"PeriodicalId\":405107,\"journal\":{\"name\":\"CIRED - Open Access Proceedings Journal\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRED - Open Access Proceedings Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/OAP-CIRED.2021.0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRED - Open Access Proceedings Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/OAP-CIRED.2021.0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果要分析N-1个案例的年度模拟,基于时间序列的电力系统分析需要较长的模拟时间。人工神经网络可以训练来预测母线电压大小和线路负载,以缩短这些模拟时间。在这项研究中,作者展示了如何通过应用不同的数据预处理方法,包括采样方法,特征选择策略和缩放技术来减少预测误差。结果显示了四个现实基准网格。结果表明,采用预处理方法,最大预测误差可降低30%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of power flow results in time-series-based planning with artificial neural networks and data pre-processing
Time-series-based analysis of power systems requires long simulation times if the annual simulation of N–1 cases are to be analysed. Artificial neural networks can be trained to predict bus voltage magnitudes and line loadings to shorten these simulation times. In this study, the authors show how to reduce prediction errors by applying different data pre-processing methods including sampling methods, feature selection strategies, and scaling techniques. Results are shown for four realistic benchmark grids. The authors show that the maximum prediction error can be reduced by >30% when using pre-processing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信