基于视觉的基于强化学习和深度学习的轮式移动机器人Leader-Follower控制

Kayleb Garmon, Y. Wang
{"title":"基于视觉的基于强化学习和深度学习的轮式移动机器人Leader-Follower控制","authors":"Kayleb Garmon, Y. Wang","doi":"10.1109/ISSSR58837.2023.00071","DOIUrl":null,"url":null,"abstract":"Vision-based control of mobile robots often involves complex calculations to derive a control law. The reinforcement learning algorithm (Q-learning) offers a machine learning method to extrapolate a control law from an environment given discretized actions, without the need of complex calculations. In this paper, a vision-based controller is created using Q-Learning to enable tracking in a leader-follower configuration of two nonholonomic autonomous mobile robots. The follower robot gathers its desired trajectory values by using a deep learning SSD model to identify a distinguishing visual feature on the leader robot and uses a lidar to determine the distance between two robots. These parameters are utilized to select an optimal action of the follower robot through reinforcement learning. The emulated results in a ROS Gazebo environment show this method to be effective in enabling a wheeled mobile robot to follow another, while simultaneously avoiding obstacles.","PeriodicalId":185173,"journal":{"name":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision Based Leader-Follower Control of Wheeled Mobile Robots using Reinforcement Learning and Deep Learning\",\"authors\":\"Kayleb Garmon, Y. Wang\",\"doi\":\"10.1109/ISSSR58837.2023.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision-based control of mobile robots often involves complex calculations to derive a control law. The reinforcement learning algorithm (Q-learning) offers a machine learning method to extrapolate a control law from an environment given discretized actions, without the need of complex calculations. In this paper, a vision-based controller is created using Q-Learning to enable tracking in a leader-follower configuration of two nonholonomic autonomous mobile robots. The follower robot gathers its desired trajectory values by using a deep learning SSD model to identify a distinguishing visual feature on the leader robot and uses a lidar to determine the distance between two robots. These parameters are utilized to select an optimal action of the follower robot through reinforcement learning. The emulated results in a ROS Gazebo environment show this method to be effective in enabling a wheeled mobile robot to follow another, while simultaneously avoiding obstacles.\",\"PeriodicalId\":185173,\"journal\":{\"name\":\"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSSR58837.2023.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSR58837.2023.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉的移动机器人控制往往需要复杂的计算来推导控制律。强化学习算法(Q-learning)提供了一种机器学习方法,可以从给定离散动作的环境中推断出控制律,而不需要复杂的计算。在本文中,使用Q-Learning创建了一个基于视觉的控制器,以实现两个非完整自主移动机器人的领导者-追随者配置的跟踪。跟随机器人使用深度学习SSD模型收集所需的轨迹值,以识别领导机器人的显著视觉特征,并使用激光雷达确定两个机器人之间的距离。利用这些参数通过强化学习选择跟随机器人的最优动作。在ROS Gazebo环境中的仿真结果表明,该方法可以有效地使轮式移动机器人跟随另一个机器人,同时避开障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision Based Leader-Follower Control of Wheeled Mobile Robots using Reinforcement Learning and Deep Learning
Vision-based control of mobile robots often involves complex calculations to derive a control law. The reinforcement learning algorithm (Q-learning) offers a machine learning method to extrapolate a control law from an environment given discretized actions, without the need of complex calculations. In this paper, a vision-based controller is created using Q-Learning to enable tracking in a leader-follower configuration of two nonholonomic autonomous mobile robots. The follower robot gathers its desired trajectory values by using a deep learning SSD model to identify a distinguishing visual feature on the leader robot and uses a lidar to determine the distance between two robots. These parameters are utilized to select an optimal action of the follower robot through reinforcement learning. The emulated results in a ROS Gazebo environment show this method to be effective in enabling a wheeled mobile robot to follow another, while simultaneously avoiding obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信