集成电动汽车充电站的直流铁路电力系统接触网过电压稳定

Baoling Guo, J. Pouget, Luc Bossoney, M. Carpita, Thomas Meier, Jean-Paul Maye
{"title":"集成电动汽车充电站的直流铁路电力系统接触网过电压稳定","authors":"Baoling Guo, J. Pouget, Luc Bossoney, M. Carpita, Thomas Meier, Jean-Paul Maye","doi":"10.1109/ICHQP53011.2022.9808815","DOIUrl":null,"url":null,"abstract":"The DC railway electrification systems are widely used to supply the national, regional, and urban (metro and tramway) railway systems. However, the catenary line voltage is subject to high voltage variations due to the moving train loads. The catenary line voltage drops when the train accelerates, while the overvoltage occurs when the train brakes. The frequent overvoltages can increase system maintenance costs and reduce life cycles of the onboard devices. In a practical design, if the catenary voltage reaches its upper limit, the rheostat brake is performed to maintain the voltage stability. The braking energy is dissipated as heat by the onboard rheostat, such operation can reduce the global energy efficiency. Therefore, this work proposes to install Electrical Vehicle (EV) charging stations along the DC electric railway line in order to stabilize the catenary voltage. The braking energy is used by charging EV to achieve higher energy efficiency. A regional 850 V DC railway microgrid located in mountain area is considered in this work. Two cases without and with EV chargers are modeled, simulated, and compared by using Matlab/Simulink. The results highlight the performance of the EV charging solution in terms of voltage stabilization and braking energy savings, also economic aspects.","PeriodicalId":249133,"journal":{"name":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Catenary overvoltage stabilization of DC railway electrical system by integrating EV charging stations\",\"authors\":\"Baoling Guo, J. Pouget, Luc Bossoney, M. Carpita, Thomas Meier, Jean-Paul Maye\",\"doi\":\"10.1109/ICHQP53011.2022.9808815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DC railway electrification systems are widely used to supply the national, regional, and urban (metro and tramway) railway systems. However, the catenary line voltage is subject to high voltage variations due to the moving train loads. The catenary line voltage drops when the train accelerates, while the overvoltage occurs when the train brakes. The frequent overvoltages can increase system maintenance costs and reduce life cycles of the onboard devices. In a practical design, if the catenary voltage reaches its upper limit, the rheostat brake is performed to maintain the voltage stability. The braking energy is dissipated as heat by the onboard rheostat, such operation can reduce the global energy efficiency. Therefore, this work proposes to install Electrical Vehicle (EV) charging stations along the DC electric railway line in order to stabilize the catenary voltage. The braking energy is used by charging EV to achieve higher energy efficiency. A regional 850 V DC railway microgrid located in mountain area is considered in this work. Two cases without and with EV chargers are modeled, simulated, and compared by using Matlab/Simulink. The results highlight the performance of the EV charging solution in terms of voltage stabilization and braking energy savings, also economic aspects.\",\"PeriodicalId\":249133,\"journal\":{\"name\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP53011.2022.9808815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP53011.2022.9808815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

直流铁路电气化系统广泛应用于国家、区域和城市(地铁和有轨电车)铁路系统。然而,接触网线电压受到高电压变化,由于移动的列车负载。列车加速时接触网电压下降,列车刹车时出现过电压。频繁的过电压会增加系统维护成本,降低板载设备的生命周期。在实际设计中,如果接触网电压达到其上限,则进行变阻器制动以保持电压稳定。制动能量以热量的形式被车载变阻器耗散,这样的操作会降低整体能源效率。因此,本文提出在直流电气化铁路沿线安装电动汽车充电站,以稳定接触网电压。将制动能量用于电动汽车充电,实现更高的能效。本文研究了山区850伏直流区域铁路微电网。利用Matlab/Simulink对不带充电器和带充电器两种情况进行了建模、仿真和比较。测试结果突出了电动汽车充电解决方案在电压稳定、制动节能以及经济方面的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catenary overvoltage stabilization of DC railway electrical system by integrating EV charging stations
The DC railway electrification systems are widely used to supply the national, regional, and urban (metro and tramway) railway systems. However, the catenary line voltage is subject to high voltage variations due to the moving train loads. The catenary line voltage drops when the train accelerates, while the overvoltage occurs when the train brakes. The frequent overvoltages can increase system maintenance costs and reduce life cycles of the onboard devices. In a practical design, if the catenary voltage reaches its upper limit, the rheostat brake is performed to maintain the voltage stability. The braking energy is dissipated as heat by the onboard rheostat, such operation can reduce the global energy efficiency. Therefore, this work proposes to install Electrical Vehicle (EV) charging stations along the DC electric railway line in order to stabilize the catenary voltage. The braking energy is used by charging EV to achieve higher energy efficiency. A regional 850 V DC railway microgrid located in mountain area is considered in this work. Two cases without and with EV chargers are modeled, simulated, and compared by using Matlab/Simulink. The results highlight the performance of the EV charging solution in terms of voltage stabilization and braking energy savings, also economic aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信