流数据的持久同源性

Anindya Moitra, Nicholas O. Malott, P. Wilsey
{"title":"流数据的持久同源性","authors":"Anindya Moitra, Nicholas O. Malott, P. Wilsey","doi":"10.1109/ICDMW51313.2020.00090","DOIUrl":null,"url":null,"abstract":"This paper introduces a framework to compute persistent homology, a principal tool in Topological Data Analysis, on potentially unbounded and evolving data streams. The framework is organized into online and offline components. The online element maintains a summary of the data that preserves the topological structure of the stream. The offline component computes the persistence intervals from the data captured by the summary. The framework is applied to the detection of horizontal or reticulate genomic exchanges during the evolution of species that cannot be identified by phylogenetic inference or traditional data mining. The method effectively detects reticulate evolution that occurs through reassortment and recombination in large streams of genomic sequences of Influenza and HIV viruses.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Persistent Homology on Streaming Data\",\"authors\":\"Anindya Moitra, Nicholas O. Malott, P. Wilsey\",\"doi\":\"10.1109/ICDMW51313.2020.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a framework to compute persistent homology, a principal tool in Topological Data Analysis, on potentially unbounded and evolving data streams. The framework is organized into online and offline components. The online element maintains a summary of the data that preserves the topological structure of the stream. The offline component computes the persistence intervals from the data captured by the summary. The framework is applied to the detection of horizontal or reticulate genomic exchanges during the evolution of species that cannot be identified by phylogenetic inference or traditional data mining. The method effectively detects reticulate evolution that occurs through reassortment and recombination in large streams of genomic sequences of Influenza and HIV viruses.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一个计算持久同调的框架,这是拓扑数据分析中的一个主要工具,用于计算潜在无界和不断发展的数据流。该框架被组织为在线和离线组件。online元素维护数据的摘要,该摘要保留了流的拓扑结构。脱机组件根据摘要捕获的数据计算持久性间隔。该框架适用于检测物种进化过程中无法通过系统发育推断或传统数据挖掘识别的水平或网状基因组交换。该方法有效地检测了流感病毒和HIV病毒基因组序列大流中通过重组和重组发生的网状进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistent Homology on Streaming Data
This paper introduces a framework to compute persistent homology, a principal tool in Topological Data Analysis, on potentially unbounded and evolving data streams. The framework is organized into online and offline components. The online element maintains a summary of the data that preserves the topological structure of the stream. The offline component computes the persistence intervals from the data captured by the summary. The framework is applied to the detection of horizontal or reticulate genomic exchanges during the evolution of species that cannot be identified by phylogenetic inference or traditional data mining. The method effectively detects reticulate evolution that occurs through reassortment and recombination in large streams of genomic sequences of Influenza and HIV viruses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信