关于BCK(2)-项的渐近数

O. Bodini, Bernhard Gittenberger
{"title":"关于BCK(2)-项的渐近数","authors":"O. Bodini, Bernhard Gittenberger","doi":"10.1137/1.9781611973204.3","DOIUrl":null,"url":null,"abstract":"We investigate the asymptotic number of a particular class of closed lambda-terms. This class is a generalization of a class of terms related to the axiom system BCK which is well known in combinatory logic. We determine the asymptotic number of terms, when their size tends to infinity, up to a constant multiplicative factor and discover a surprising asymptotic behaviour involving an exponential with fractional powers in the exponent.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the asymptotic number of BCK(2)-terms\",\"authors\":\"O. Bodini, Bernhard Gittenberger\",\"doi\":\"10.1137/1.9781611973204.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the asymptotic number of a particular class of closed lambda-terms. This class is a generalization of a class of terms related to the axiom system BCK which is well known in combinatory logic. We determine the asymptotic number of terms, when their size tends to infinity, up to a constant multiplicative factor and discover a surprising asymptotic behaviour involving an exponential with fractional powers in the exponent.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973204.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973204.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了一类特定闭λ项的渐近数。这类是对在组合逻辑中众所周知的公理系统BCK相关的一类项的推广。我们确定了项的渐近数目,当它们的大小趋于无穷大时,直到一个常数乘因子,并发现了一个令人惊讶的渐近行为,涉及指数中的分数次方指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotic number of BCK(2)-terms
We investigate the asymptotic number of a particular class of closed lambda-terms. This class is a generalization of a class of terms related to the axiom system BCK which is well known in combinatory logic. We determine the asymptotic number of terms, when their size tends to infinity, up to a constant multiplicative factor and discover a surprising asymptotic behaviour involving an exponential with fractional powers in the exponent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信