采用对数量化的图像压缩新方法

M. Rahali, H. Loukil, M. Bouhlel
{"title":"采用对数量化的图像压缩新方法","authors":"M. Rahali, H. Loukil, M. Bouhlel","doi":"10.1109/DT.2017.8012143","DOIUrl":null,"url":null,"abstract":"The compression methods of images based on neural network and wavelet transform gives a limitation in the compression ratio and the reconstructed image quality. To improve the compression ratio without quality degradation of the reconstructed image, we add a phase of pretreatment before the discrete wavelet transform uses the principle of Weber-Fechner law which says that the sensation of the human eye to light is logarithmic. We quantify the image by using the Weber-Fechner law to reduce the entropy of the image before the compression.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New image compression method using logarithmic quantization\",\"authors\":\"M. Rahali, H. Loukil, M. Bouhlel\",\"doi\":\"10.1109/DT.2017.8012143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compression methods of images based on neural network and wavelet transform gives a limitation in the compression ratio and the reconstructed image quality. To improve the compression ratio without quality degradation of the reconstructed image, we add a phase of pretreatment before the discrete wavelet transform uses the principle of Weber-Fechner law which says that the sensation of the human eye to light is logarithmic. We quantify the image by using the Weber-Fechner law to reduce the entropy of the image before the compression.\",\"PeriodicalId\":426951,\"journal\":{\"name\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DT.2017.8012143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DT.2017.8012143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于神经网络和小波变换的图像压缩方法在压缩比和重构图像质量方面存在局限性。为了在不降低重建图像质量的前提下提高压缩比,我们在离散小波变换前增加了一段预处理,该预处理利用了人眼对光的感觉是对数的Weber-Fechner定律原理。我们利用韦伯-费希纳定律对图像进行量化,以减少压缩前图像的熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New image compression method using logarithmic quantization
The compression methods of images based on neural network and wavelet transform gives a limitation in the compression ratio and the reconstructed image quality. To improve the compression ratio without quality degradation of the reconstructed image, we add a phase of pretreatment before the discrete wavelet transform uses the principle of Weber-Fechner law which says that the sensation of the human eye to light is logarithmic. We quantify the image by using the Weber-Fechner law to reduce the entropy of the image before the compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信