基于自适应模糊遗传算法的XCS智能勘探方法

A. Hamzeh, A. Rahmani, N. Parsa
{"title":"基于自适应模糊遗传算法的XCS智能勘探方法","authors":"A. Hamzeh, A. Rahmani, N. Parsa","doi":"10.1109/ICCIS.2006.252271","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an extension to the intelligent exploration method which is introduced in our previous work. IEM is an intelligent exploration method that is used to tune the exploration rate in XCS. In this paper we improve the IEM's performance using a learning fuzzy controller instead of the static one in IEM. The new system is called IEMII (IEM 2) and is compared with the IEM and the traditional XCS in some benchmark problems","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intelligent Exploration Method to Adapt Exploration Rate in XCS, Based on Adaptive Fuzzy Genetic Algorithm\",\"authors\":\"A. Hamzeh, A. Rahmani, N. Parsa\",\"doi\":\"10.1109/ICCIS.2006.252271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an extension to the intelligent exploration method which is introduced in our previous work. IEM is an intelligent exploration method that is used to tune the exploration rate in XCS. In this paper we improve the IEM's performance using a learning fuzzy controller instead of the static one in IEM. The new system is called IEMII (IEM 2) and is compared with the IEM and the traditional XCS in some benchmark problems\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了对前人工作中引入的智能勘探方法的扩展。IEM是XCS中用于调整勘探速率的智能勘探方法。本文采用学习模糊控制器代替静态模糊控制器,提高了IEM的性能。新系统被称为ieemii (iem2),并在一些基准问题上与IEM和传统的XCS进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Exploration Method to Adapt Exploration Rate in XCS, Based on Adaptive Fuzzy Genetic Algorithm
In this paper, we propose an extension to the intelligent exploration method which is introduced in our previous work. IEM is an intelligent exploration method that is used to tune the exploration rate in XCS. In this paper we improve the IEM's performance using a learning fuzzy controller instead of the static one in IEM. The new system is called IEMII (IEM 2) and is compared with the IEM and the traditional XCS in some benchmark problems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信