fMR数据集的预处理

F. Kruggel, X. Descombes, D. Yves von Cramon
{"title":"fMR数据集的预处理","authors":"F. Kruggel, X. Descombes, D. Yves von Cramon","doi":"10.1109/BIA.1998.692518","DOIUrl":null,"url":null,"abstract":"When studying complex cognitive tasks using functional magnetic resonance (fMR) imaging one often encounters weak signal responses. These weak responses are corrupted by noise and artifacts of various sources. Preprocessing of the raw data before the application of test statistics helps to extract the signal and thus can vastly improve signal detection. The authors discuss artifact sources and algorithms to handle them. Experiments with simulated and real data underline the usefulness of this preprocessing sequence.","PeriodicalId":261632,"journal":{"name":"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Preprocessing of fMR datasets\",\"authors\":\"F. Kruggel, X. Descombes, D. Yves von Cramon\",\"doi\":\"10.1109/BIA.1998.692518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When studying complex cognitive tasks using functional magnetic resonance (fMR) imaging one often encounters weak signal responses. These weak responses are corrupted by noise and artifacts of various sources. Preprocessing of the raw data before the application of test statistics helps to extract the signal and thus can vastly improve signal detection. The authors discuss artifact sources and algorithms to handle them. Experiments with simulated and real data underline the usefulness of this preprocessing sequence.\",\"PeriodicalId\":261632,\"journal\":{\"name\":\"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIA.1998.692518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA.1998.692518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在使用功能磁共振(fMR)成像研究复杂的认知任务时,人们经常遇到微弱的信号反应。这些微弱的响应被噪声和各种来源的伪影所破坏。在应用测试统计量之前对原始数据进行预处理有助于提取信号,从而可以大大提高信号检测。作者讨论了工件的来源和处理它们的算法。模拟和真实数据的实验表明了该预处理序列的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preprocessing of fMR datasets
When studying complex cognitive tasks using functional magnetic resonance (fMR) imaging one often encounters weak signal responses. These weak responses are corrupted by noise and artifacts of various sources. Preprocessing of the raw data before the application of test statistics helps to extract the signal and thus can vastly improve signal detection. The authors discuss artifact sources and algorithms to handle them. Experiments with simulated and real data underline the usefulness of this preprocessing sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信