基于学习融合的多视角多模态动作识别

Sandy Ardianto, H. Hang
{"title":"基于学习融合的多视角多模态动作识别","authors":"Sandy Ardianto, H. Hang","doi":"10.23919/APSIPA.2018.8659539","DOIUrl":null,"url":null,"abstract":"In this paper, we study multi-modal and multi-view action recognition system based on the deep-learning techniques. We extended the Temporal Segment Network with additional data fusion stage to combine information from different sources. In this research, we use multiple types of information from different modality such as RGB, depth, infrared data to detect predefined human actions. We tested various combinations of these data sources to examine their impact on the final detection accuracy. We designed 3 information fusion methods to generate the final decision. The most interested one is the Learned Fusion Net designed by us. It turns out the Learned Fusion structure has the best results but requires more training.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-View and Multi-Modal Action Recognition with Learned Fusion\",\"authors\":\"Sandy Ardianto, H. Hang\",\"doi\":\"10.23919/APSIPA.2018.8659539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study multi-modal and multi-view action recognition system based on the deep-learning techniques. We extended the Temporal Segment Network with additional data fusion stage to combine information from different sources. In this research, we use multiple types of information from different modality such as RGB, depth, infrared data to detect predefined human actions. We tested various combinations of these data sources to examine their impact on the final detection accuracy. We designed 3 information fusion methods to generate the final decision. The most interested one is the Learned Fusion Net designed by us. It turns out the Learned Fusion structure has the best results but requires more training.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了基于深度学习技术的多模态、多视角动作识别系统。我们对时态段网络进行了扩展,增加了数据融合阶段,以整合不同来源的信息。在本研究中,我们使用来自不同模态的多种类型的信息,如RGB、深度、红外数据来检测预定义的人类行为。我们测试了这些数据源的各种组合,以检查它们对最终检测精度的影响。我们设计了3种信息融合方法来生成最终的决策。最让人感兴趣的是我们设计的学习型融合网。事实证明,习得融合结构的效果最好,但需要更多的训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-View and Multi-Modal Action Recognition with Learned Fusion
In this paper, we study multi-modal and multi-view action recognition system based on the deep-learning techniques. We extended the Temporal Segment Network with additional data fusion stage to combine information from different sources. In this research, we use multiple types of information from different modality such as RGB, depth, infrared data to detect predefined human actions. We tested various combinations of these data sources to examine their impact on the final detection accuracy. We designed 3 information fusion methods to generate the final decision. The most interested one is the Learned Fusion Net designed by us. It turns out the Learned Fusion structure has the best results but requires more training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信