纵向支持向量回归预测ALS评分

Wei Du, Huey Cheung, Calvin A. Johnson, I. Goldberg, M. Thambisetty, Kevin Becker
{"title":"纵向支持向量回归预测ALS评分","authors":"Wei Du, Huey Cheung, Calvin A. Johnson, I. Goldberg, M. Thambisetty, Kevin Becker","doi":"10.1109/BIBM.2015.7359912","DOIUrl":null,"url":null,"abstract":"Longitudinal studies play a key role in various fields, including epidemiology, clinical research, and genomic analysis. Currently, the most popular methods in longitudinal data analysis are model-driven regression approaches, which impose strong prior assumptions and are unable to scale to large problems in the manner of machine learning algorithms. In this work, we propose a novel longitudinal support vector regression (LSVR) algorithm that not only takes the advantage of one of the most popular machine learning methods, but also is able to model the temporal nature of longitudinal data by taking into account observational dependence within subjects. We test LSVR on publicly available data from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. Results suggest that LSVR is at a minimum competitive with favored machine learning methods and is able to outperform those methods in predicting ALS score one month in advance.","PeriodicalId":186217,"journal":{"name":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"22 6S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A longitudinal support vector regression for prediction of ALS score\",\"authors\":\"Wei Du, Huey Cheung, Calvin A. Johnson, I. Goldberg, M. Thambisetty, Kevin Becker\",\"doi\":\"10.1109/BIBM.2015.7359912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Longitudinal studies play a key role in various fields, including epidemiology, clinical research, and genomic analysis. Currently, the most popular methods in longitudinal data analysis are model-driven regression approaches, which impose strong prior assumptions and are unable to scale to large problems in the manner of machine learning algorithms. In this work, we propose a novel longitudinal support vector regression (LSVR) algorithm that not only takes the advantage of one of the most popular machine learning methods, but also is able to model the temporal nature of longitudinal data by taking into account observational dependence within subjects. We test LSVR on publicly available data from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. Results suggest that LSVR is at a minimum competitive with favored machine learning methods and is able to outperform those methods in predicting ALS score one month in advance.\",\"PeriodicalId\":186217,\"journal\":{\"name\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"22 6S 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2015.7359912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2015.7359912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

纵向研究在包括流行病学、临床研究和基因组分析在内的各个领域发挥着关键作用。目前,纵向数据分析中最流行的方法是模型驱动回归方法,这种方法强加了很强的先验假设,并且无法像机器学习算法那样扩展到大型问题。在这项工作中,我们提出了一种新的纵向支持向量回归(LSVR)算法,该算法不仅利用了最流行的机器学习方法之一,而且还能够通过考虑受试者内部的观察依赖性来模拟纵向数据的时间性质。我们在DREAM-Phil Bowen ALS预测Prize4Life挑战的公开数据上测试LSVR。结果表明,LSVR与受青睐的机器学习方法相比至少具有竞争力,并且能够提前一个月预测ALS评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A longitudinal support vector regression for prediction of ALS score
Longitudinal studies play a key role in various fields, including epidemiology, clinical research, and genomic analysis. Currently, the most popular methods in longitudinal data analysis are model-driven regression approaches, which impose strong prior assumptions and are unable to scale to large problems in the manner of machine learning algorithms. In this work, we propose a novel longitudinal support vector regression (LSVR) algorithm that not only takes the advantage of one of the most popular machine learning methods, but also is able to model the temporal nature of longitudinal data by taking into account observational dependence within subjects. We test LSVR on publicly available data from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. Results suggest that LSVR is at a minimum competitive with favored machine learning methods and is able to outperform those methods in predicting ALS score one month in advance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信