基于概率密度函数估计度量变量之间的相关性

Sisi Chen
{"title":"基于概率密度函数估计度量变量之间的相关性","authors":"Sisi Chen","doi":"10.1109/CCIS.2011.6045049","DOIUrl":null,"url":null,"abstract":"Mutual information (MI) is always used as the indicator of nonlinear correlation between the variables. The computation of MI can be finished only the continuous-value variables are discretized. In this paper, one new strategy of computing the MI between variables is proposed. The probability density estimation (PDE) is used to determine the density functions in our method. An approximate technology is applied to replace the computation of integral. Finally, MI based on PDE can be obtained. Through the artificially experimental simulations, the performance and rationality of our new method are demonstrated. The experimental results show that our method is feasible, effective and efficient.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the correlation between variables based on the probability density function estimation\",\"authors\":\"Sisi Chen\",\"doi\":\"10.1109/CCIS.2011.6045049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutual information (MI) is always used as the indicator of nonlinear correlation between the variables. The computation of MI can be finished only the continuous-value variables are discretized. In this paper, one new strategy of computing the MI between variables is proposed. The probability density estimation (PDE) is used to determine the density functions in our method. An approximate technology is applied to replace the computation of integral. Finally, MI based on PDE can be obtained. Through the artificially experimental simulations, the performance and rationality of our new method are demonstrated. The experimental results show that our method is feasible, effective and efficient.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互信息(MI)常被用作变量间非线性相关性的指标。只有对连续值变量进行离散化,才能完成MI的计算。本文提出了一种计算变量间MI的新策略。该方法采用概率密度估计(PDE)来确定密度函数。采用近似技术代替积分计算。最后,得到了基于PDE的MI。通过人工实验仿真,验证了新方法的性能和合理性。实验结果表明,该方法是可行、有效和高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring the correlation between variables based on the probability density function estimation
Mutual information (MI) is always used as the indicator of nonlinear correlation between the variables. The computation of MI can be finished only the continuous-value variables are discretized. In this paper, one new strategy of computing the MI between variables is proposed. The probability density estimation (PDE) is used to determine the density functions in our method. An approximate technology is applied to replace the computation of integral. Finally, MI based on PDE can be obtained. Through the artificially experimental simulations, the performance and rationality of our new method are demonstrated. The experimental results show that our method is feasible, effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信