分析AlexNet的线性和非线性变换以深入了解其性能

Jyoti Nigam, Srishti Barahpuriya, Renu M. Rameshan
{"title":"分析AlexNet的线性和非线性变换以深入了解其性能","authors":"Jyoti Nigam, Srishti Barahpuriya, Renu M. Rameshan","doi":"10.5220/0007582408600865","DOIUrl":null,"url":null,"abstract":"AlexNet, one of the earliest and successful deep learning networks, has given great performance in image classification task. There are some fundamental properties for good classification such as: the network preserves the important information of the input data; the network is able to see differently, points from different classes. In this work we experimentally verify that these core properties are followed by the AlexNet architecture. We analyze the effect of linear and nonlinear transformations on input data across the layers. The convolution filters are modeled as linear transformations. The verified results motivate to draw conclusions on the desirable properties of transformation matrix that aid in better classification.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Linear and Nonlinear Transformations of AlexNet to Gain Insight into Its Performance\",\"authors\":\"Jyoti Nigam, Srishti Barahpuriya, Renu M. Rameshan\",\"doi\":\"10.5220/0007582408600865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AlexNet, one of the earliest and successful deep learning networks, has given great performance in image classification task. There are some fundamental properties for good classification such as: the network preserves the important information of the input data; the network is able to see differently, points from different classes. In this work we experimentally verify that these core properties are followed by the AlexNet architecture. We analyze the effect of linear and nonlinear transformations on input data across the layers. The convolution filters are modeled as linear transformations. The verified results motivate to draw conclusions on the desirable properties of transformation matrix that aid in better classification.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007582408600865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007582408600865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AlexNet是最早和成功的深度学习网络之一,在图像分类任务中表现出色。好的分类有一些基本的性质,如:网络保留了输入数据的重要信息;网络能够看到不同的,来自不同阶层的点。在这项工作中,我们通过实验验证了AlexNet架构遵循这些核心属性。我们分析了线性和非线性变换对各层输入数据的影响。卷积滤波器被建模为线性变换。验证的结果促使我们对变换矩阵的理想性质得出结论,从而有助于更好地分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Linear and Nonlinear Transformations of AlexNet to Gain Insight into Its Performance
AlexNet, one of the earliest and successful deep learning networks, has given great performance in image classification task. There are some fundamental properties for good classification such as: the network preserves the important information of the input data; the network is able to see differently, points from different classes. In this work we experimentally verify that these core properties are followed by the AlexNet architecture. We analyze the effect of linear and nonlinear transformations on input data across the layers. The convolution filters are modeled as linear transformations. The verified results motivate to draw conclusions on the desirable properties of transformation matrix that aid in better classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信