E. Vissol-Gaudin, A. Kotsialos, M. K. Massey, C. Groves, C. Pearson, D. Zeze, M. Petty
{"title":"碳纳米管/液晶复合材料的二元分类问题及进化算法","authors":"E. Vissol-Gaudin, A. Kotsialos, M. K. Massey, C. Groves, C. Pearson, D. Zeze, M. Petty","doi":"10.1109/CEC.2017.7969536","DOIUrl":null,"url":null,"abstract":"This paper presents a series of experiments demonstrating the capacity of single-walled carbon-nanotube (SWCNT)/liquid crystal (LC) mixtures to be trained by evolutionary algorithms to act as classifiers on linear and nonlinear binary datasets. The training process is formulated as an optimisation problem with hardware in the loop. The liquid SWCNT/LC samples used here are un-configured and with nonlinear current-voltage relationship, thus presenting a potential for being evolved. The nature of the problem means that derivative-free stochastic search algorithms are required. Results presented here are based on differential evolution (DE) and particle swarm optimisation (PSO). Further investigations using DE, suggest that a SWCNT/LC material is capable of being reconfigured for different binary classification problems, corroborating previous research. In addition, it is able to retain a physical memory of each of the solutions to the problems it has been trained to solve.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Solving binary classification problems with carbon nanotube / liquid crystal composites and evolutionary algorithms\",\"authors\":\"E. Vissol-Gaudin, A. Kotsialos, M. K. Massey, C. Groves, C. Pearson, D. Zeze, M. Petty\",\"doi\":\"10.1109/CEC.2017.7969536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a series of experiments demonstrating the capacity of single-walled carbon-nanotube (SWCNT)/liquid crystal (LC) mixtures to be trained by evolutionary algorithms to act as classifiers on linear and nonlinear binary datasets. The training process is formulated as an optimisation problem with hardware in the loop. The liquid SWCNT/LC samples used here are un-configured and with nonlinear current-voltage relationship, thus presenting a potential for being evolved. The nature of the problem means that derivative-free stochastic search algorithms are required. Results presented here are based on differential evolution (DE) and particle swarm optimisation (PSO). Further investigations using DE, suggest that a SWCNT/LC material is capable of being reconfigured for different binary classification problems, corroborating previous research. In addition, it is able to retain a physical memory of each of the solutions to the problems it has been trained to solve.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving binary classification problems with carbon nanotube / liquid crystal composites and evolutionary algorithms
This paper presents a series of experiments demonstrating the capacity of single-walled carbon-nanotube (SWCNT)/liquid crystal (LC) mixtures to be trained by evolutionary algorithms to act as classifiers on linear and nonlinear binary datasets. The training process is formulated as an optimisation problem with hardware in the loop. The liquid SWCNT/LC samples used here are un-configured and with nonlinear current-voltage relationship, thus presenting a potential for being evolved. The nature of the problem means that derivative-free stochastic search algorithms are required. Results presented here are based on differential evolution (DE) and particle swarm optimisation (PSO). Further investigations using DE, suggest that a SWCNT/LC material is capable of being reconfigured for different binary classification problems, corroborating previous research. In addition, it is able to retain a physical memory of each of the solutions to the problems it has been trained to solve.