{"title":"凸度量的信息集中","authors":"Jiange Li, M. Fradelizi, M. Madiman","doi":"10.1109/ISIT.2016.7541475","DOIUrl":null,"url":null,"abstract":"Sharp exponential deviation estimates for the information content as well as a sharp bound on the varentropy are obtained for convex probability measures on Euclidean spaces. These provide, in a sense, a nonasymptotic equipartition property for convex measures even in the absence of stationarity-type assumptions.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"205 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Information concentration for convex measures\",\"authors\":\"Jiange Li, M. Fradelizi, M. Madiman\",\"doi\":\"10.1109/ISIT.2016.7541475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sharp exponential deviation estimates for the information content as well as a sharp bound on the varentropy are obtained for convex probability measures on Euclidean spaces. These provide, in a sense, a nonasymptotic equipartition property for convex measures even in the absence of stationarity-type assumptions.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"205 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sharp exponential deviation estimates for the information content as well as a sharp bound on the varentropy are obtained for convex probability measures on Euclidean spaces. These provide, in a sense, a nonasymptotic equipartition property for convex measures even in the absence of stationarity-type assumptions.