J. P. D. Silva, Kelson Aires, A. F. D. Santos, Rodrigo M. S. Veras, Laurindo de S. B. Neto, L. P. D. Sousa, Francisco das C. I. Filho
{"title":"使用深度学习对皮肤癌进行语义分割","authors":"J. P. D. Silva, Kelson Aires, A. F. D. Santos, Rodrigo M. S. Veras, Laurindo de S. B. Neto, L. P. D. Sousa, Francisco das C. I. Filho","doi":"10.5753/sbcas.2023.229926","DOIUrl":null,"url":null,"abstract":"O câncer de pele é um dos grandes problemas enfrentados pela saúde pública, e a utilização de Aprendizado de Profundo pode permitir a classificação de lesões de pele em imagens. Nesse contexto, este trabalho tem o objetivo de desenvolver um método de segmentação de lesões de pele para facilitar a classificação de lesões. Nesse sentido, foi utilizado a arquitetura DeepLab3+ associada à limiarização global, refinado em três modelos específicos: (1) somente para lesões malignas, (2) somente para lesões benignas e (3) para todos os tipos de lesões. Os experimentos utilizaram quatro bases públicas, HAM10000, ISIC 2016, ISIC 2017 e PH2. Os melhores resultados atingiram um Dice de 94,42% na base HAM10000, 91,68% na base ISIC 2016, 87,19% na base ISIC 2017 e 92,12% na base PH2. Os melhores resultados foram alcançados com o modelo treinado para todos os tipos de lesões.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"57 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentação Semântica do Câncer de Pele Utilizando Aprendizado Profundo\",\"authors\":\"J. P. D. Silva, Kelson Aires, A. F. D. Santos, Rodrigo M. S. Veras, Laurindo de S. B. Neto, L. P. D. Sousa, Francisco das C. I. Filho\",\"doi\":\"10.5753/sbcas.2023.229926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O câncer de pele é um dos grandes problemas enfrentados pela saúde pública, e a utilização de Aprendizado de Profundo pode permitir a classificação de lesões de pele em imagens. Nesse contexto, este trabalho tem o objetivo de desenvolver um método de segmentação de lesões de pele para facilitar a classificação de lesões. Nesse sentido, foi utilizado a arquitetura DeepLab3+ associada à limiarização global, refinado em três modelos específicos: (1) somente para lesões malignas, (2) somente para lesões benignas e (3) para todos os tipos de lesões. Os experimentos utilizaram quatro bases públicas, HAM10000, ISIC 2016, ISIC 2017 e PH2. Os melhores resultados atingiram um Dice de 94,42% na base HAM10000, 91,68% na base ISIC 2016, 87,19% na base ISIC 2017 e 92,12% na base PH2. Os melhores resultados foram alcançados com o modelo treinado para todos os tipos de lesões.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"57 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentação Semântica do Câncer de Pele Utilizando Aprendizado Profundo
O câncer de pele é um dos grandes problemas enfrentados pela saúde pública, e a utilização de Aprendizado de Profundo pode permitir a classificação de lesões de pele em imagens. Nesse contexto, este trabalho tem o objetivo de desenvolver um método de segmentação de lesões de pele para facilitar a classificação de lesões. Nesse sentido, foi utilizado a arquitetura DeepLab3+ associada à limiarização global, refinado em três modelos específicos: (1) somente para lesões malignas, (2) somente para lesões benignas e (3) para todos os tipos de lesões. Os experimentos utilizaram quatro bases públicas, HAM10000, ISIC 2016, ISIC 2017 e PH2. Os melhores resultados atingiram um Dice de 94,42% na base HAM10000, 91,68% na base ISIC 2016, 87,19% na base ISIC 2017 e 92,12% na base PH2. Os melhores resultados foram alcançados com o modelo treinado para todos os tipos de lesões.