最小幂$k$边不相交$st$ -路径的$O(\sqrt{k})$-逼近算法

Zeev Nutov
{"title":"最小幂$k$边不相交$st$ -路径的$O(\\sqrt{k})$-逼近算法","authors":"Zeev Nutov","doi":"10.48550/arXiv.2208.09373","DOIUrl":null,"url":null,"abstract":"In minimum power network design problems we are given an undirected graph $G=(V,E)$ with edge costs $\\{c_e:e \\in E\\}$. The goal is to find an edge set $F\\subseteq E$ that satisfies a prescribed property of minimum power $p_c(F)=\\sum_{v \\in V} \\max \\{c_e: e \\in F \\mbox{ is incident to } v\\}$. In the Min-Power $k$ Edge Disjoint $st$-Paths problem $F$ should contains $k$ edge disjoint $st$-paths. The problem admits a $k$-approximation algorithm, and it was an open question whether it admits approximation ratio sublinear in $k$ even for unit costs. We give a $4\\sqrt{2k}$-approximation algorithm for general costs.","PeriodicalId":436783,"journal":{"name":"Conference on Computability in Europe","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An $O(\\\\sqrt{k})$-approximation algorithm for minimum power $k$ edge disjoint $st$ -paths\",\"authors\":\"Zeev Nutov\",\"doi\":\"10.48550/arXiv.2208.09373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In minimum power network design problems we are given an undirected graph $G=(V,E)$ with edge costs $\\\\{c_e:e \\\\in E\\\\}$. The goal is to find an edge set $F\\\\subseteq E$ that satisfies a prescribed property of minimum power $p_c(F)=\\\\sum_{v \\\\in V} \\\\max \\\\{c_e: e \\\\in F \\\\mbox{ is incident to } v\\\\}$. In the Min-Power $k$ Edge Disjoint $st$-Paths problem $F$ should contains $k$ edge disjoint $st$-paths. The problem admits a $k$-approximation algorithm, and it was an open question whether it admits approximation ratio sublinear in $k$ even for unit costs. We give a $4\\\\sqrt{2k}$-approximation algorithm for general costs.\",\"PeriodicalId\":436783,\"journal\":{\"name\":\"Conference on Computability in Europe\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computability in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.09373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computability in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在最小电网设计问题中,我们给出了一个无向图$G=(V,E)$,其边缘代价为$\{c_e:e \in E\}$。目标是找到一个边集$F\subseteq E$,它满足最小幂$p_c(F)=\sum_{v \in V} \max \{c_e: e \in F \mbox{ is incident to } v\}$的规定性质。在最小功率$k$边不相交$st$ -路径问题中$F$应该包含$k$边不相交$st$ -路径。这个问题承认$k$近似算法,它是否承认近似比在$k$的次线性是一个开放的问题,即使是单位成本。我们给出了一般成本的$4\sqrt{2k}$ -近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An $O(\sqrt{k})$-approximation algorithm for minimum power $k$ edge disjoint $st$ -paths
In minimum power network design problems we are given an undirected graph $G=(V,E)$ with edge costs $\{c_e:e \in E\}$. The goal is to find an edge set $F\subseteq E$ that satisfies a prescribed property of minimum power $p_c(F)=\sum_{v \in V} \max \{c_e: e \in F \mbox{ is incident to } v\}$. In the Min-Power $k$ Edge Disjoint $st$-Paths problem $F$ should contains $k$ edge disjoint $st$-paths. The problem admits a $k$-approximation algorithm, and it was an open question whether it admits approximation ratio sublinear in $k$ even for unit costs. We give a $4\sqrt{2k}$-approximation algorithm for general costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信