数值和时间序列多源数据序列模式的分类。在极端天气预报中的初步应用

Regina Yulia Yasmin, A. E. Sakya, Untung Merdijanto
{"title":"数值和时间序列多源数据序列模式的分类。在极端天气预报中的初步应用","authors":"Regina Yulia Yasmin, A. E. Sakya, Untung Merdijanto","doi":"10.1109/ICODSE.2017.8285845","DOIUrl":null,"url":null,"abstract":"Classification based on sequential patterns has become very important method in data mining. It is useful to make predictions for alert warning system and strategic decision. Moreover the necessity to improve the speed performance of sequential pattern mining also increases. However, previous researches on this area uses categorical data as input. There is necessity to process numerical data and classify sequential patterns found from the data. High accuracy numerical data are difficult to mine. Moreover, numerical data to be mined consist of many observational parameter data. This study proposes framework to overcome the problem. The framework proposes to categorize the data in preprocessing and prepare it to be ready as input for sequential pattern mining and the subsequent classification process. The framework will improve classification speed, scalability and also maintain the classification accuracy.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A classification of sequential patterns for numerical and time series multiple source data — A preliminary application on extreme weather prediction\",\"authors\":\"Regina Yulia Yasmin, A. E. Sakya, Untung Merdijanto\",\"doi\":\"10.1109/ICODSE.2017.8285845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification based on sequential patterns has become very important method in data mining. It is useful to make predictions for alert warning system and strategic decision. Moreover the necessity to improve the speed performance of sequential pattern mining also increases. However, previous researches on this area uses categorical data as input. There is necessity to process numerical data and classify sequential patterns found from the data. High accuracy numerical data are difficult to mine. Moreover, numerical data to be mined consist of many observational parameter data. This study proposes framework to overcome the problem. The framework proposes to categorize the data in preprocessing and prepare it to be ready as input for sequential pattern mining and the subsequent classification process. The framework will improve classification speed, scalability and also maintain the classification accuracy.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于顺序模式的分类已经成为数据挖掘中非常重要的方法。它对预警系统的预测和战略决策具有重要的指导意义。此外,提高顺序模式挖掘的速度性能的必要性也增加了。然而,在这方面的先前研究使用分类数据作为输入。有必要对数字数据进行处理,并对从数据中发现的顺序模式进行分类。高精度的数值数据是难以挖掘的。此外,要挖掘的数值数据由许多观测参数数据组成。本研究提出了克服这一问题的框架。该框架建议在预处理过程中对数据进行分类,并准备好作为顺序模式挖掘和后续分类过程的输入。该框架将提高分类速度、可扩展性和保持分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of sequential patterns for numerical and time series multiple source data — A preliminary application on extreme weather prediction
Classification based on sequential patterns has become very important method in data mining. It is useful to make predictions for alert warning system and strategic decision. Moreover the necessity to improve the speed performance of sequential pattern mining also increases. However, previous researches on this area uses categorical data as input. There is necessity to process numerical data and classify sequential patterns found from the data. High accuracy numerical data are difficult to mine. Moreover, numerical data to be mined consist of many observational parameter data. This study proposes framework to overcome the problem. The framework proposes to categorize the data in preprocessing and prepare it to be ready as input for sequential pattern mining and the subsequent classification process. The framework will improve classification speed, scalability and also maintain the classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信