面向使用大型语言模型的新手程序员的开放式自然语言反馈生成

Charles Koutcheme
{"title":"面向使用大型语言模型的新手程序员的开放式自然语言反馈生成","authors":"Charles Koutcheme","doi":"10.1145/3564721.3565955","DOIUrl":null,"url":null,"abstract":"Automated feedback on programming exercises has traditionally focused on correctness of submitted exercises. The correctness has been inferred, for example, based on a set of unit tests. Recent advances in the area of providing feedback have suggested relying on large language models for building feedback. In this poster, we present an approach for automatically constructed formative feedback, written in natural language, that builds on two streams of research: (1) automatic program repair, and (2) automatically generating descriptions of programs. Building on combining these two streams, we propose a new approach for constructing written formative feedback on programming exercise submissions.","PeriodicalId":149708,"journal":{"name":"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Open Natural Language Feedback Generation for Novice Programmers using Large Language Models\",\"authors\":\"Charles Koutcheme\",\"doi\":\"10.1145/3564721.3565955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated feedback on programming exercises has traditionally focused on correctness of submitted exercises. The correctness has been inferred, for example, based on a set of unit tests. Recent advances in the area of providing feedback have suggested relying on large language models for building feedback. In this poster, we present an approach for automatically constructed formative feedback, written in natural language, that builds on two streams of research: (1) automatic program repair, and (2) automatically generating descriptions of programs. Building on combining these two streams, we propose a new approach for constructing written formative feedback on programming exercise submissions.\",\"PeriodicalId\":149708,\"journal\":{\"name\":\"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3564721.3565955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564721.3565955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对编程练习的自动反馈传统上关注于提交练习的正确性。例如,已经根据一组单元测试推断出了正确性。在提供反馈方面的最新进展建议依赖大型语言模型来构建反馈。在这张海报中,我们提出了一种以自然语言编写的自动构建形成性反馈的方法,该方法建立在两个研究流的基础上:(1)自动程序修复,(2)自动生成程序描述。在结合这两个流的基础上,我们提出了一种新的方法,用于构建对编程练习提交的书面形成性反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Open Natural Language Feedback Generation for Novice Programmers using Large Language Models
Automated feedback on programming exercises has traditionally focused on correctness of submitted exercises. The correctness has been inferred, for example, based on a set of unit tests. Recent advances in the area of providing feedback have suggested relying on large language models for building feedback. In this poster, we present an approach for automatically constructed formative feedback, written in natural language, that builds on two streams of research: (1) automatic program repair, and (2) automatically generating descriptions of programs. Building on combining these two streams, we propose a new approach for constructing written formative feedback on programming exercise submissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信