{"title":"面向使用大型语言模型的新手程序员的开放式自然语言反馈生成","authors":"Charles Koutcheme","doi":"10.1145/3564721.3565955","DOIUrl":null,"url":null,"abstract":"Automated feedback on programming exercises has traditionally focused on correctness of submitted exercises. The correctness has been inferred, for example, based on a set of unit tests. Recent advances in the area of providing feedback have suggested relying on large language models for building feedback. In this poster, we present an approach for automatically constructed formative feedback, written in natural language, that builds on two streams of research: (1) automatic program repair, and (2) automatically generating descriptions of programs. Building on combining these two streams, we propose a new approach for constructing written formative feedback on programming exercise submissions.","PeriodicalId":149708,"journal":{"name":"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Open Natural Language Feedback Generation for Novice Programmers using Large Language Models\",\"authors\":\"Charles Koutcheme\",\"doi\":\"10.1145/3564721.3565955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated feedback on programming exercises has traditionally focused on correctness of submitted exercises. The correctness has been inferred, for example, based on a set of unit tests. Recent advances in the area of providing feedback have suggested relying on large language models for building feedback. In this poster, we present an approach for automatically constructed formative feedback, written in natural language, that builds on two streams of research: (1) automatic program repair, and (2) automatically generating descriptions of programs. Building on combining these two streams, we propose a new approach for constructing written formative feedback on programming exercise submissions.\",\"PeriodicalId\":149708,\"journal\":{\"name\":\"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3564721.3565955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564721.3565955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Open Natural Language Feedback Generation for Novice Programmers using Large Language Models
Automated feedback on programming exercises has traditionally focused on correctness of submitted exercises. The correctness has been inferred, for example, based on a set of unit tests. Recent advances in the area of providing feedback have suggested relying on large language models for building feedback. In this poster, we present an approach for automatically constructed formative feedback, written in natural language, that builds on two streams of research: (1) automatic program repair, and (2) automatically generating descriptions of programs. Building on combining these two streams, we propose a new approach for constructing written formative feedback on programming exercise submissions.