粒子平流性能在不同的架构和工作负载

H. Childs, Scott Biersdorff, David Poliakoff, David Camp, A. Malony
{"title":"粒子平流性能在不同的架构和工作负载","authors":"H. Childs, Scott Biersdorff, David Poliakoff, David Camp, A. Malony","doi":"10.1109/HiPC.2014.7116900","DOIUrl":null,"url":null,"abstract":"Particle advection is a foundational operation for many flow visualization techniques, including streamlines, Finite-Time Lyapunov Exponents (FTLE) calculation, and stream surfaces. The workload for particle advection problems varies greatly, including significant variation in computational requirements. With this study, we consider the performance impacts from hardware architecture on this problem, studying distributed-memory systems with CPUs with varying amounts of cores per node, and with nodes with one to three GPUs. Our goal was to explore which architectures were best suited to which workloads, and why. While the results of this study will help inform visualization scientists which architectures they should use when solving certain flow visualization problems, it is also informative for the larger HPC community, since many simulation codes will soon incorporate visualization via in situ techniques.","PeriodicalId":337777,"journal":{"name":"2014 21st International Conference on High Performance Computing (HiPC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Particle advection performance over varied architectures and workloads\",\"authors\":\"H. Childs, Scott Biersdorff, David Poliakoff, David Camp, A. Malony\",\"doi\":\"10.1109/HiPC.2014.7116900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle advection is a foundational operation for many flow visualization techniques, including streamlines, Finite-Time Lyapunov Exponents (FTLE) calculation, and stream surfaces. The workload for particle advection problems varies greatly, including significant variation in computational requirements. With this study, we consider the performance impacts from hardware architecture on this problem, studying distributed-memory systems with CPUs with varying amounts of cores per node, and with nodes with one to three GPUs. Our goal was to explore which architectures were best suited to which workloads, and why. While the results of this study will help inform visualization scientists which architectures they should use when solving certain flow visualization problems, it is also informative for the larger HPC community, since many simulation codes will soon incorporate visualization via in situ techniques.\",\"PeriodicalId\":337777,\"journal\":{\"name\":\"2014 21st International Conference on High Performance Computing (HiPC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st International Conference on High Performance Computing (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC.2014.7116900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2014.7116900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

粒子平流是许多流动可视化技术的基础操作,包括流线、有限时间李雅普诺夫指数(FTLE)计算和流表面。粒子平流问题的工作量变化很大,包括计算要求的显著变化。在这项研究中,我们考虑了硬件架构对这个问题的性能影响,研究了具有每个节点具有不同数量内核的cpu的分布式内存系统,以及具有1到3个gpu的节点。我们的目标是探索哪种架构最适合哪种工作负载,以及为什么。虽然这项研究的结果将有助于可视化科学家在解决某些流动可视化问题时应该使用哪种架构,但它也为更大的高性能计算社区提供了信息,因为许多模拟代码将很快通过原位技术纳入可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle advection performance over varied architectures and workloads
Particle advection is a foundational operation for many flow visualization techniques, including streamlines, Finite-Time Lyapunov Exponents (FTLE) calculation, and stream surfaces. The workload for particle advection problems varies greatly, including significant variation in computational requirements. With this study, we consider the performance impacts from hardware architecture on this problem, studying distributed-memory systems with CPUs with varying amounts of cores per node, and with nodes with one to three GPUs. Our goal was to explore which architectures were best suited to which workloads, and why. While the results of this study will help inform visualization scientists which architectures they should use when solving certain flow visualization problems, it is also informative for the larger HPC community, since many simulation codes will soon incorporate visualization via in situ techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信