基于深度学习技术提高基于短语的印度语言统计机器翻译系统的精度

Kritik Soman, J. P. Sanjanasri, M. A. Kumar
{"title":"基于深度学习技术提高基于短语的印度语言统计机器翻译系统的精度","authors":"Kritik Soman, J. P. Sanjanasri, M. A. Kumar","doi":"10.1504/ijcaet.2020.10029101","DOIUrl":null,"url":null,"abstract":"The paper focuses on improving the existing phrase-based statistical machine translation (PB-SMT) system by integrating deep learning knowledge to it. In this paper, a deep learning-based PB-SMT system for Indian languages is developed, so as to improve the conditional probability of the phrase-table and replaced the neural probabilistic language model with the existing back off algorithm of n-gram language model to improve the performance of language model. It is shown that the deep feature-based PB-SMT is better than the standard PB-SMT system. It is shown the significance of integrating manually created dictionaries that has been trained as separate translational model can enhance the result of statistical machine translation system when decoding. For automatic evaluation, it is shown that RIBES being a better evaluation metric for Indian languages compared to BLEU, a standard one.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep learning-based techniques to enhance the precision of phrase-based statistical machine translation system for Indian languages\",\"authors\":\"Kritik Soman, J. P. Sanjanasri, M. A. Kumar\",\"doi\":\"10.1504/ijcaet.2020.10029101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on improving the existing phrase-based statistical machine translation (PB-SMT) system by integrating deep learning knowledge to it. In this paper, a deep learning-based PB-SMT system for Indian languages is developed, so as to improve the conditional probability of the phrase-table and replaced the neural probabilistic language model with the existing back off algorithm of n-gram language model to improve the performance of language model. It is shown that the deep feature-based PB-SMT is better than the standard PB-SMT system. It is shown the significance of integrating manually created dictionaries that has been trained as separate translational model can enhance the result of statistical machine translation system when decoding. For automatic evaluation, it is shown that RIBES being a better evaluation metric for Indian languages compared to BLEU, a standard one.\",\"PeriodicalId\":346646,\"journal\":{\"name\":\"Int. J. Comput. Aided Eng. Technol.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Aided Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcaet.2020.10029101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcaet.2020.10029101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文主要通过将深度学习知识集成到现有的基于短语的统计机器翻译(PB-SMT)系统中,对其进行改进。本文开发了一种基于深度学习的印度语言PB-SMT系统,以提高短语表的条件概率,并用现有的n-gram语言模型后退算法取代神经概率语言模型,提高语言模型的性能。实验结果表明,基于深度特征的PB-SMT系统优于标准PB-SMT系统。研究表明,将人工创建的词典作为独立的翻译模型进行整合,可以提高统计机器翻译系统解码的结果。对于自动评估,RIBES比BLEU(一种标准的评估指标)更适合印度语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based techniques to enhance the precision of phrase-based statistical machine translation system for Indian languages
The paper focuses on improving the existing phrase-based statistical machine translation (PB-SMT) system by integrating deep learning knowledge to it. In this paper, a deep learning-based PB-SMT system for Indian languages is developed, so as to improve the conditional probability of the phrase-table and replaced the neural probabilistic language model with the existing back off algorithm of n-gram language model to improve the performance of language model. It is shown that the deep feature-based PB-SMT is better than the standard PB-SMT system. It is shown the significance of integrating manually created dictionaries that has been trained as separate translational model can enhance the result of statistical machine translation system when decoding. For automatic evaluation, it is shown that RIBES being a better evaluation metric for Indian languages compared to BLEU, a standard one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信