基于机器学习的小麦产量估计与预测

Mukesh Singh Boori, K. Choudhary, R. Paringer, A. Kupriyanov, Youngwook Kim
{"title":"基于机器学习的小麦产量估计与预测","authors":"Mukesh Singh Boori, K. Choudhary, R. Paringer, A. Kupriyanov, Youngwook Kim","doi":"10.1109/ITNT57377.2023.10139117","DOIUrl":null,"url":null,"abstract":"A precise wheat yield estimation and prediction are significant for food safety and security purposes of a region or a country, which provide societal peace and sustainable development. Earlier methods for wheat yield prediction are time-consuming, site-specific, and expensive, require more manpower, and delay results with numerous errors and uncertainty. This research work uses numerous heterogeneous data in machine learning via linear regression (LR), decision tree (DT), and random forest (RF) regression by python for accurate wheat yield estimation and prediction at 10m resolution. In a comparison of all three regressions, RF shows the highest accuracy with R2: 98, and RMSE: 1.40, which is also increasing from seedling to harvest growth stage. This research work provides precision agriculture for the sustainable development of a region or a country.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheat Yield Estimation and Predication Via Machine Learning\",\"authors\":\"Mukesh Singh Boori, K. Choudhary, R. Paringer, A. Kupriyanov, Youngwook Kim\",\"doi\":\"10.1109/ITNT57377.2023.10139117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A precise wheat yield estimation and prediction are significant for food safety and security purposes of a region or a country, which provide societal peace and sustainable development. Earlier methods for wheat yield prediction are time-consuming, site-specific, and expensive, require more manpower, and delay results with numerous errors and uncertainty. This research work uses numerous heterogeneous data in machine learning via linear regression (LR), decision tree (DT), and random forest (RF) regression by python for accurate wheat yield estimation and prediction at 10m resolution. In a comparison of all three regressions, RF shows the highest accuracy with R2: 98, and RMSE: 1.40, which is also increasing from seedling to harvest growth stage. This research work provides precision agriculture for the sustainable development of a region or a country.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的小麦产量估算和预测对一个地区或一个国家的食品安全具有重要意义,为社会的和平与可持续发展提供保障。早期的小麦产量预测方法耗时长,且价格昂贵,需要更多的人力,并且结果延迟,存在许多误差和不确定性。本研究工作在机器学习中使用大量异构数据,通过线性回归(LR)、决策树(DT)和随机森林(RF)回归,通过python进行精确的小麦产量估计和预测,分辨率为10m。在3种回归的比较中,RF的准确度最高,R2为98,RMSE为1.40,且从苗期到收获生长期均呈增加趋势。这项研究工作为一个地区或一个国家的可持续发展提供了精准农业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wheat Yield Estimation and Predication Via Machine Learning
A precise wheat yield estimation and prediction are significant for food safety and security purposes of a region or a country, which provide societal peace and sustainable development. Earlier methods for wheat yield prediction are time-consuming, site-specific, and expensive, require more manpower, and delay results with numerous errors and uncertainty. This research work uses numerous heterogeneous data in machine learning via linear regression (LR), decision tree (DT), and random forest (RF) regression by python for accurate wheat yield estimation and prediction at 10m resolution. In a comparison of all three regressions, RF shows the highest accuracy with R2: 98, and RMSE: 1.40, which is also increasing from seedling to harvest growth stage. This research work provides precision agriculture for the sustainable development of a region or a country.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信