神经网络与模糊逻辑的融合、隶属函数与权值

Rama Asad Nadweh
{"title":"神经网络与模糊逻辑的融合、隶属函数与权值","authors":"Rama Asad Nadweh","doi":"10.54216/gjmsa.070102","DOIUrl":null,"url":null,"abstract":"Fuzzy logic plays a huge role in the symbolic inference and causality associated with modern cognitive human systems. In this paper, we present a mathematical method that defines the mechanism of forming a hybrid structure in which neural networks and expert systems are connected so that one forms a primary processing stage for the other, where the neural network can act as a primary processor that processes low-level information, or as an internal Subsystem for learning tasks or generalization and classification. Where neural networks can be used to generate rules using training data and then submit these rules to be used by a fuzzy system to give the final results.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On The Fusion of Neural Networks and Fuzzy Logic, Membership Functions and Weights\",\"authors\":\"Rama Asad Nadweh\",\"doi\":\"10.54216/gjmsa.070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy logic plays a huge role in the symbolic inference and causality associated with modern cognitive human systems. In this paper, we present a mathematical method that defines the mechanism of forming a hybrid structure in which neural networks and expert systems are connected so that one forms a primary processing stage for the other, where the neural network can act as a primary processor that processes low-level information, or as an internal Subsystem for learning tasks or generalization and classification. Where neural networks can be used to generate rules using training data and then submit these rules to be used by a fuzzy system to give the final results.\",\"PeriodicalId\":299243,\"journal\":{\"name\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/gjmsa.070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模糊逻辑在现代人类认知系统的符号推理和因果关系中起着巨大的作用。在本文中,我们提出了一种数学方法,该方法定义了形成混合结构的机制,其中神经网络和专家系统连接在一起,使一个形成另一个的主要处理阶段,其中神经网络可以作为处理低级信息的主要处理器,或作为学习任务或泛化和分类的内部子系统。其中神经网络可以使用训练数据生成规则,然后将这些规则提交给模糊系统来给出最终结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On The Fusion of Neural Networks and Fuzzy Logic, Membership Functions and Weights
Fuzzy logic plays a huge role in the symbolic inference and causality associated with modern cognitive human systems. In this paper, we present a mathematical method that defines the mechanism of forming a hybrid structure in which neural networks and expert systems are connected so that one forms a primary processing stage for the other, where the neural network can act as a primary processor that processes low-level information, or as an internal Subsystem for learning tasks or generalization and classification. Where neural networks can be used to generate rules using training data and then submit these rules to be used by a fuzzy system to give the final results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信