从轴向图像序列的定性图像重建

Philippe Guermeur, E. Pissaloux
{"title":"从轴向图像序列的定性图像重建","authors":"Philippe Guermeur, E. Pissaloux","doi":"10.1109/AIPR.2001.991222","DOIUrl":null,"url":null,"abstract":"This paper presents a method to process axial monocular image sequences for mobile robot obstacle detection. We do not aim to achieve a complete scene reconstruction, but only to evaluate the time to collision and surface orientation useful for robot obstacle avoidance. Using a planar facet representation we first calculate formally the velocity field generated by the camera motion. The apparent deformations, in conjunction with a projective model, are then used in order to evaluate the scene apparent movement with a wide angle camera. In practice, we process separately the tangential and radial components of the apparent velocity vectors, using the epipolar constraint. Noise resistance is improved by integration using the Green's and Stoke's theorems which provide a link with surface moments. Experimental results on synthesis and real images of indoor scenes are given, and their validity is discussed Potential applications include visual navigation, obstacle detection, visual servoing, and object recognition.","PeriodicalId":277181,"journal":{"name":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A qualitative image reconstruction from an axial image sequence\",\"authors\":\"Philippe Guermeur, E. Pissaloux\",\"doi\":\"10.1109/AIPR.2001.991222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to process axial monocular image sequences for mobile robot obstacle detection. We do not aim to achieve a complete scene reconstruction, but only to evaluate the time to collision and surface orientation useful for robot obstacle avoidance. Using a planar facet representation we first calculate formally the velocity field generated by the camera motion. The apparent deformations, in conjunction with a projective model, are then used in order to evaluate the scene apparent movement with a wide angle camera. In practice, we process separately the tangential and radial components of the apparent velocity vectors, using the epipolar constraint. Noise resistance is improved by integration using the Green's and Stoke's theorems which provide a link with surface moments. Experimental results on synthesis and real images of indoor scenes are given, and their validity is discussed Potential applications include visual navigation, obstacle detection, visual servoing, and object recognition.\",\"PeriodicalId\":277181,\"journal\":{\"name\":\"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2001.991222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2001.991222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种用于移动机器人障碍物检测的轴向单目图像序列处理方法。我们的目标不是实现完整的场景重建,而只是评估碰撞时间和表面方向对机器人避障有用。使用平面面表示,我们首先正式计算由相机运动产生的速度场。视变形,结合投影模型,然后用广角相机来评估场景的视运动。在实践中,我们分别处理切向和径向分量的视速度矢量,使用极面约束。通过使用格林定理和斯托克定理的集成提高了抗噪声性,这些定理提供了与表面力矩的联系。给出了室内场景合成图像和真实图像的实验结果,并对其有效性进行了讨论,其潜在的应用领域包括视觉导航、障碍物检测、视觉伺服和目标识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A qualitative image reconstruction from an axial image sequence
This paper presents a method to process axial monocular image sequences for mobile robot obstacle detection. We do not aim to achieve a complete scene reconstruction, but only to evaluate the time to collision and surface orientation useful for robot obstacle avoidance. Using a planar facet representation we first calculate formally the velocity field generated by the camera motion. The apparent deformations, in conjunction with a projective model, are then used in order to evaluate the scene apparent movement with a wide angle camera. In practice, we process separately the tangential and radial components of the apparent velocity vectors, using the epipolar constraint. Noise resistance is improved by integration using the Green's and Stoke's theorems which provide a link with surface moments. Experimental results on synthesis and real images of indoor scenes are given, and their validity is discussed Potential applications include visual navigation, obstacle detection, visual servoing, and object recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信