{"title":"基于三加速度传感器的跌倒体检测算法","authors":"P. Salgado, P. Afonso","doi":"10.1109/CINTI.2013.6705221","DOIUrl":null,"url":null,"abstract":"In this paper a fall body detection system for a smartphone device is proposed. Its embedded tri-accelerometer sensor was utilized to collect the information about the body motion used by a real-time Pose Body Model (PBM) identified by an Extended Kalman filter algorithm. The PBM supply an estimate about the vertical pose angle value and a neural network is used to detect body fall incidents. Moreover, an automatic Multimedia Messaging Service (MMS) will be sent to a central of vigilant where additional information including the time and the GPS coordinates, reports the suspected fall location.","PeriodicalId":439949,"journal":{"name":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fall body detection algorithm based on tri-accelerometer sensors\",\"authors\":\"P. Salgado, P. Afonso\",\"doi\":\"10.1109/CINTI.2013.6705221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a fall body detection system for a smartphone device is proposed. Its embedded tri-accelerometer sensor was utilized to collect the information about the body motion used by a real-time Pose Body Model (PBM) identified by an Extended Kalman filter algorithm. The PBM supply an estimate about the vertical pose angle value and a neural network is used to detect body fall incidents. Moreover, an automatic Multimedia Messaging Service (MMS) will be sent to a central of vigilant where additional information including the time and the GPS coordinates, reports the suspected fall location.\",\"PeriodicalId\":439949,\"journal\":{\"name\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI.2013.6705221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI.2013.6705221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fall body detection algorithm based on tri-accelerometer sensors
In this paper a fall body detection system for a smartphone device is proposed. Its embedded tri-accelerometer sensor was utilized to collect the information about the body motion used by a real-time Pose Body Model (PBM) identified by an Extended Kalman filter algorithm. The PBM supply an estimate about the vertical pose angle value and a neural network is used to detect body fall incidents. Moreover, an automatic Multimedia Messaging Service (MMS) will be sent to a central of vigilant where additional information including the time and the GPS coordinates, reports the suspected fall location.