弹性控制系统执行代理(ReCoSEA)

Craig Rieger, K. Villez
{"title":"弹性控制系统执行代理(ReCoSEA)","authors":"Craig Rieger, K. Villez","doi":"10.1109/ISRCS.2012.6309308","DOIUrl":null,"url":null,"abstract":"In an increasingly connected world, critical infrastructure systems suffer from two types of vulnerability. The first is the traditionally recognized problem of monitoring the systems for faults and failures, recognizing and analyzing data, and responding with real understanding to the problems of the system. Increasingly complex systems create the opportunity for single points of failure to cascade when inaccurate assessment of system health increases response time or leads to faulty analysis of the problems involved. A second problem involves vulnerability to cyber intrusion, in which malignant actors can mask system degradation or present false data about system status. A resilient system will protect stability, efficiency, and security. To ensure these three states, the system must react to changing conditions within the system with coordination: no one component of the system can be allowed to react to problems without real consideration of the effects of that action on other components within the system. Systems with multi-agent design typically have three layers of action, a management layer, a coordination layer, and an execution layer. A resilient multi-agent system will emphasize functions of the execution layer, which has the responsibility of initiating actions, monitoring, analyzing, and controlling its own processes, while feeding information back to the higher levels of management and coordination. The design concept of a resilient control system execution agent (ReCoSEA) grows out of these underpinnings, and through the use of computational intelligence techniques, this paper suggests an associated design methodology.","PeriodicalId":227062,"journal":{"name":"2012 5th International Symposium on Resilient Control Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Resilient control system execution agent (ReCoSEA)\",\"authors\":\"Craig Rieger, K. Villez\",\"doi\":\"10.1109/ISRCS.2012.6309308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an increasingly connected world, critical infrastructure systems suffer from two types of vulnerability. The first is the traditionally recognized problem of monitoring the systems for faults and failures, recognizing and analyzing data, and responding with real understanding to the problems of the system. Increasingly complex systems create the opportunity for single points of failure to cascade when inaccurate assessment of system health increases response time or leads to faulty analysis of the problems involved. A second problem involves vulnerability to cyber intrusion, in which malignant actors can mask system degradation or present false data about system status. A resilient system will protect stability, efficiency, and security. To ensure these three states, the system must react to changing conditions within the system with coordination: no one component of the system can be allowed to react to problems without real consideration of the effects of that action on other components within the system. Systems with multi-agent design typically have three layers of action, a management layer, a coordination layer, and an execution layer. A resilient multi-agent system will emphasize functions of the execution layer, which has the responsibility of initiating actions, monitoring, analyzing, and controlling its own processes, while feeding information back to the higher levels of management and coordination. The design concept of a resilient control system execution agent (ReCoSEA) grows out of these underpinnings, and through the use of computational intelligence techniques, this paper suggests an associated design methodology.\",\"PeriodicalId\":227062,\"journal\":{\"name\":\"2012 5th International Symposium on Resilient Control Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 5th International Symposium on Resilient Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRCS.2012.6309308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 5th International Symposium on Resilient Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRCS.2012.6309308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在一个联系日益紧密的世界里,关键基础设施系统面临两种类型的脆弱性。第一个是传统上公认的问题,即监控系统的故障和失败,识别和分析数据,并以真正的理解来响应系统的问题。当对系统运行状况的不准确评估增加了响应时间或导致对所涉及问题的错误分析时,日益复杂的系统为单点故障级联创造了机会。第二个问题涉及网络入侵的脆弱性,在这种情况下,恶意行为者可以掩盖系统退化或提供有关系统状态的虚假数据。弹性系统将保障稳定性、效率和安全性。为了确保这三种状态,系统必须协调地对系统内不断变化的条件作出反应:如果不真正考虑该行为对系统内其他组件的影响,系统中的任何一个组件都不能对问题作出反应。具有多代理设计的系统通常具有三层操作:管理层、协调层和执行层。一个有弹性的多智能体系统将强调执行层的功能,执行层负责发起行动、监视、分析和控制自己的过程,同时将信息反馈给更高层次的管理和协调。弹性控制系统执行代理(ReCoSEA)的设计概念源于这些基础,并通过使用计算智能技术,本文提出了一种相关的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilient control system execution agent (ReCoSEA)
In an increasingly connected world, critical infrastructure systems suffer from two types of vulnerability. The first is the traditionally recognized problem of monitoring the systems for faults and failures, recognizing and analyzing data, and responding with real understanding to the problems of the system. Increasingly complex systems create the opportunity for single points of failure to cascade when inaccurate assessment of system health increases response time or leads to faulty analysis of the problems involved. A second problem involves vulnerability to cyber intrusion, in which malignant actors can mask system degradation or present false data about system status. A resilient system will protect stability, efficiency, and security. To ensure these three states, the system must react to changing conditions within the system with coordination: no one component of the system can be allowed to react to problems without real consideration of the effects of that action on other components within the system. Systems with multi-agent design typically have three layers of action, a management layer, a coordination layer, and an execution layer. A resilient multi-agent system will emphasize functions of the execution layer, which has the responsibility of initiating actions, monitoring, analyzing, and controlling its own processes, while feeding information back to the higher levels of management and coordination. The design concept of a resilient control system execution agent (ReCoSEA) grows out of these underpinnings, and through the use of computational intelligence techniques, this paper suggests an associated design methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信