{"title":"系统学习模型决策树的可行性研究","authors":"Swantje Plambeck, Lutz Schammer, Görschwin Fey","doi":"10.1109/asp-dac52403.2022.9712579","DOIUrl":null,"url":null,"abstract":"Abstract models of embedded systems are useful for various tasks, ranging from diagnosis, through testing to monitoring at run-time. However, deriving a model for an unknown system is difficult. Generic learners like decision trees can identify specific properties of systems and have been applied successfully, e.g., for anomaly detection and test case identification. We consider Decision Tree Learning (DTL) to derive a new type of model from given observations with bounded history for systems that have a Mealy machine representation. We prove theoretical limitations and evaluate the practical characteristics in an experimental validation.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Viability of Decision Trees for Learning Models of Systems\",\"authors\":\"Swantje Plambeck, Lutz Schammer, Görschwin Fey\",\"doi\":\"10.1109/asp-dac52403.2022.9712579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract models of embedded systems are useful for various tasks, ranging from diagnosis, through testing to monitoring at run-time. However, deriving a model for an unknown system is difficult. Generic learners like decision trees can identify specific properties of systems and have been applied successfully, e.g., for anomaly detection and test case identification. We consider Decision Tree Learning (DTL) to derive a new type of model from given observations with bounded history for systems that have a Mealy machine representation. We prove theoretical limitations and evaluate the practical characteristics in an experimental validation.\",\"PeriodicalId\":239260,\"journal\":{\"name\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asp-dac52403.2022.9712579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asp-dac52403.2022.9712579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Viability of Decision Trees for Learning Models of Systems
Abstract models of embedded systems are useful for various tasks, ranging from diagnosis, through testing to monitoring at run-time. However, deriving a model for an unknown system is difficult. Generic learners like decision trees can identify specific properties of systems and have been applied successfully, e.g., for anomaly detection and test case identification. We consider Decision Tree Learning (DTL) to derive a new type of model from given observations with bounded history for systems that have a Mealy machine representation. We prove theoretical limitations and evaluate the practical characteristics in an experimental validation.