基于CS-TFD的星载SAR舰船图像增强方法

Guochao Lao, W. Ye, Guozhu Liu
{"title":"基于CS-TFD的星载SAR舰船图像增强方法","authors":"Guochao Lao, W. Ye, Guozhu Liu","doi":"10.1109/ICSESS.2017.8342961","DOIUrl":null,"url":null,"abstract":"The spaceborne synthetic aperture radar (SAR) image would become defocused and fuzzy when aiming to a moving vessel. To solve the problem, a vessel imagery enhancement method combining compressed sensing (CS) with time frequency distribution (TFD) is presented, by which, the imaging result is improved, and a series of images at different azimuth time are obtained showing the vessel posture changing. The validity of the method is verified by processing a measured SAR image.","PeriodicalId":179815,"journal":{"name":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vessel imagery enhancement method of spaceborne SAR based on CS-TFD\",\"authors\":\"Guochao Lao, W. Ye, Guozhu Liu\",\"doi\":\"10.1109/ICSESS.2017.8342961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spaceborne synthetic aperture radar (SAR) image would become defocused and fuzzy when aiming to a moving vessel. To solve the problem, a vessel imagery enhancement method combining compressed sensing (CS) with time frequency distribution (TFD) is presented, by which, the imaging result is improved, and a series of images at different azimuth time are obtained showing the vessel posture changing. The validity of the method is verified by processing a measured SAR image.\",\"PeriodicalId\":179815,\"journal\":{\"name\":\"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2017.8342961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2017.8342961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星载合成孔径雷达(SAR)在瞄准运动舰船时,图像会出现离焦和模糊。针对这一问题,提出了一种将压缩感知(CS)与时频分布(TFD)相结合的船舶图像增强方法,提高了成像效果,得到了一系列不同方位时间下船舶姿态变化的图像。通过对SAR实测图像的处理,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vessel imagery enhancement method of spaceborne SAR based on CS-TFD
The spaceborne synthetic aperture radar (SAR) image would become defocused and fuzzy when aiming to a moving vessel. To solve the problem, a vessel imagery enhancement method combining compressed sensing (CS) with time frequency distribution (TFD) is presented, by which, the imaging result is improved, and a series of images at different azimuth time are obtained showing the vessel posture changing. The validity of the method is verified by processing a measured SAR image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信