B A Fox, P J Spiess, A Kasid, R Puri, J J Mulé, J S Weber, S A Rosenberg
{"title":"小鼠肿瘤浸润淋巴细胞生成的t细胞克隆的体内外抗肿瘤特性。","authors":"B A Fox, P J Spiess, A Kasid, R Puri, J J Mulé, J S Weber, S A Rosenberg","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have shown that a T-cell clone derived from murine tumor-infiltrating lymphocytes (TILs) can be established that mediates in vitro and in vivo antitumor effects. Utilizing this clone as a model, we examined the effect of cytokines on T-cell antitumor effector mechanisms in vitro and in vivo. This clone, termed BF-1, was generated by limiting dilution culture of a freshly excised MC-38 tumor, growing it in low levels of interleukin-2 (IL-2), and has been maintained for over 600 days. This clone became specifically cytotoxic for the MC-38 tumor during its first 100 days of culture. Pretreatment of the parental MC-38 tumor cell line with tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) increased its susceptibility to lysis by the BF-1 TIL line, but not to lysis by lymphokine-activated killer cells, in in vitro cytotoxicity assays. This increased susceptibility of the cytokine-pretreated targets was restricted to the parental tumor (MC-38), since similar pretreatment of MCA-102, MCA-105, or MCA-106 tumors did not render them susceptible to lysis by BF-1 TILs. This increased sensitivity to lysis in vitro was not the result of a change in the expression of major histocompatibility complex class I molecules. In experiments testing the ability of TILs to treat established lung metastases, the combination of TNF, IFN-gamma, IL-2, and TILs was shown to increase significantly the antitumor properties of this therapy when compared to TILs and IL-2. This result demonstrates that combinations of lymphokines, which when administered alone do not affect micrometastatic tumor burdens (TNF, IFN-gamma), can synergize with cellular immunotherapy in the treatment of established tumor burdens and may have applicabilities to the treatment of cancer in humans.</p>","PeriodicalId":15063,"journal":{"name":"Journal of biological response modifiers","volume":"9 5","pages":"499-511"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo antitumor properties of a T-cell clone generated from murine tumor-infiltrating lymphocytes.\",\"authors\":\"B A Fox, P J Spiess, A Kasid, R Puri, J J Mulé, J S Weber, S A Rosenberg\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have shown that a T-cell clone derived from murine tumor-infiltrating lymphocytes (TILs) can be established that mediates in vitro and in vivo antitumor effects. Utilizing this clone as a model, we examined the effect of cytokines on T-cell antitumor effector mechanisms in vitro and in vivo. This clone, termed BF-1, was generated by limiting dilution culture of a freshly excised MC-38 tumor, growing it in low levels of interleukin-2 (IL-2), and has been maintained for over 600 days. This clone became specifically cytotoxic for the MC-38 tumor during its first 100 days of culture. Pretreatment of the parental MC-38 tumor cell line with tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) increased its susceptibility to lysis by the BF-1 TIL line, but not to lysis by lymphokine-activated killer cells, in in vitro cytotoxicity assays. This increased susceptibility of the cytokine-pretreated targets was restricted to the parental tumor (MC-38), since similar pretreatment of MCA-102, MCA-105, or MCA-106 tumors did not render them susceptible to lysis by BF-1 TILs. This increased sensitivity to lysis in vitro was not the result of a change in the expression of major histocompatibility complex class I molecules. In experiments testing the ability of TILs to treat established lung metastases, the combination of TNF, IFN-gamma, IL-2, and TILs was shown to increase significantly the antitumor properties of this therapy when compared to TILs and IL-2. This result demonstrates that combinations of lymphokines, which when administered alone do not affect micrometastatic tumor burdens (TNF, IFN-gamma), can synergize with cellular immunotherapy in the treatment of established tumor burdens and may have applicabilities to the treatment of cancer in humans.</p>\",\"PeriodicalId\":15063,\"journal\":{\"name\":\"Journal of biological response modifiers\",\"volume\":\"9 5\",\"pages\":\"499-511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biological response modifiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological response modifiers","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vitro and in vivo antitumor properties of a T-cell clone generated from murine tumor-infiltrating lymphocytes.
We have shown that a T-cell clone derived from murine tumor-infiltrating lymphocytes (TILs) can be established that mediates in vitro and in vivo antitumor effects. Utilizing this clone as a model, we examined the effect of cytokines on T-cell antitumor effector mechanisms in vitro and in vivo. This clone, termed BF-1, was generated by limiting dilution culture of a freshly excised MC-38 tumor, growing it in low levels of interleukin-2 (IL-2), and has been maintained for over 600 days. This clone became specifically cytotoxic for the MC-38 tumor during its first 100 days of culture. Pretreatment of the parental MC-38 tumor cell line with tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) increased its susceptibility to lysis by the BF-1 TIL line, but not to lysis by lymphokine-activated killer cells, in in vitro cytotoxicity assays. This increased susceptibility of the cytokine-pretreated targets was restricted to the parental tumor (MC-38), since similar pretreatment of MCA-102, MCA-105, or MCA-106 tumors did not render them susceptible to lysis by BF-1 TILs. This increased sensitivity to lysis in vitro was not the result of a change in the expression of major histocompatibility complex class I molecules. In experiments testing the ability of TILs to treat established lung metastases, the combination of TNF, IFN-gamma, IL-2, and TILs was shown to increase significantly the antitumor properties of this therapy when compared to TILs and IL-2. This result demonstrates that combinations of lymphokines, which when administered alone do not affect micrometastatic tumor burdens (TNF, IFN-gamma), can synergize with cellular immunotherapy in the treatment of established tumor burdens and may have applicabilities to the treatment of cancer in humans.