基于傅立叶级数的非最小相位模型用于二阶和高阶统计信号处理

Chong-Yung Chi
{"title":"基于傅立叶级数的非最小相位模型用于二阶和高阶统计信号处理","authors":"Chong-Yung Chi","doi":"10.1109/HOST.1997.613554","DOIUrl":null,"url":null,"abstract":"In the paper, a parametric Fourier series based model (FSBM) for or as an approximation to an arbitrary nonminimum-phase linear time-invariant (LTI) system is proposed for statistical signal processing applications where a model for LTI systems is needed. Based on the FSBM, a (minimum-phase) linear prediction error (LPE) filter for amplitude estimation of the unknown LTI system together with the Cramer Rao (CR) bounds is presented. Then an iterative algorithm for obtaining the optimum mean-square LPE filter with finite data is presented which is also an approximate maximum likelihood algorithm when the data are Gaussian. Then three iterative algorithms using higher-order statistics with finite non-Gaussian data are presented for estimating parameters of the FSBM followed by some simulation results to support the efficacy of the proposed algorithms. Finally, we draw some conclusions.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fourier series based nonminimum phase model for second- and higher-order statistical signal processing\",\"authors\":\"Chong-Yung Chi\",\"doi\":\"10.1109/HOST.1997.613554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, a parametric Fourier series based model (FSBM) for or as an approximation to an arbitrary nonminimum-phase linear time-invariant (LTI) system is proposed for statistical signal processing applications where a model for LTI systems is needed. Based on the FSBM, a (minimum-phase) linear prediction error (LPE) filter for amplitude estimation of the unknown LTI system together with the Cramer Rao (CR) bounds is presented. Then an iterative algorithm for obtaining the optimum mean-square LPE filter with finite data is presented which is also an approximate maximum likelihood algorithm when the data are Gaussian. Then three iterative algorithms using higher-order statistics with finite non-Gaussian data are presented for estimating parameters of the FSBM followed by some simulation results to support the efficacy of the proposed algorithms. Finally, we draw some conclusions.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于参数傅立叶级数的任意非最小相位线性时不变(LTI)系统的近似模型(FSBM),用于需要LTI系统模型的统计信号处理应用。基于FSBM,提出了一种用于未知LTI系统幅度估计的(最小相位)线性预测误差(LPE)滤波器,并给出了Cramer Rao (CR)界。然后给出了在有限数据条件下求最优均方LPE滤波器的迭代算法,该算法也是高斯数据条件下的近似最大似然算法。然后提出了三种基于有限非高斯数据的高阶统计量迭代算法来估计FSBM的参数,并通过仿真结果验证了算法的有效性。最后,我们得出一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier series based nonminimum phase model for second- and higher-order statistical signal processing
In the paper, a parametric Fourier series based model (FSBM) for or as an approximation to an arbitrary nonminimum-phase linear time-invariant (LTI) system is proposed for statistical signal processing applications where a model for LTI systems is needed. Based on the FSBM, a (minimum-phase) linear prediction error (LPE) filter for amplitude estimation of the unknown LTI system together with the Cramer Rao (CR) bounds is presented. Then an iterative algorithm for obtaining the optimum mean-square LPE filter with finite data is presented which is also an approximate maximum likelihood algorithm when the data are Gaussian. Then three iterative algorithms using higher-order statistics with finite non-Gaussian data are presented for estimating parameters of the FSBM followed by some simulation results to support the efficacy of the proposed algorithms. Finally, we draw some conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信