狄拉克电子理论

P. Peebles
{"title":"狄拉克电子理论","authors":"P. Peebles","doi":"10.2307/j.ctvxrpxzs.11","DOIUrl":null,"url":null,"abstract":"This chapter explores applications drawn from Dirac theory of the electron. In the treatment of electrons, it uses the following: an electron has spin 1/2; its magnetic dipole moment is very nearly twice that of the orbital model in which charge and mass move together; and the spin-orbit interaction is a factor of two off the value arrived at by the heuristic argument in the Chapter 7. The factor of two in the last effect is recovered if one does the Lorentz transformations in a more careful (and correct) way, but it is easier to get it from the relativistic Dirac equation. This equation applied to an electron also says the particle has spin 1/2, as observed, and it says the gyromagnetic ratio in equation (23.11) is g = 2. The small difference from the observed value is accounted for by the quantum treatment of the electromagnetic field.","PeriodicalId":257994,"journal":{"name":"Quantum Mechanics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DIRAC THEORY OF THE ELECTRON\",\"authors\":\"P. Peebles\",\"doi\":\"10.2307/j.ctvxrpxzs.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter explores applications drawn from Dirac theory of the electron. In the treatment of electrons, it uses the following: an electron has spin 1/2; its magnetic dipole moment is very nearly twice that of the orbital model in which charge and mass move together; and the spin-orbit interaction is a factor of two off the value arrived at by the heuristic argument in the Chapter 7. The factor of two in the last effect is recovered if one does the Lorentz transformations in a more careful (and correct) way, but it is easier to get it from the relativistic Dirac equation. This equation applied to an electron also says the particle has spin 1/2, as observed, and it says the gyromagnetic ratio in equation (23.11) is g = 2. The small difference from the observed value is accounted for by the quantum treatment of the electromagnetic field.\",\"PeriodicalId\":257994,\"journal\":{\"name\":\"Quantum Mechanics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvxrpxzs.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvxrpxzs.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章探讨狄拉克电子理论的应用。在处理电子时,它使用以下方法:一个电子自旋为1/2;它的磁偶极矩几乎是电荷和质量一起运动的轨道模型的两倍;自旋轨道相互作用是第七章启发式论证得出的值的两倍。如果以一种更仔细(和正确)的方式进行洛伦兹变换,则可以恢复最后一个效应中的因子2,但从相对论性狄拉克方程中更容易得到它。这个应用于电子的方程也表明,粒子的自旋为1/2,正如所观察到的那样,它说(23.11)式中的回旋磁比为g = 2。与观测值的微小差异是由电磁场的量子处理造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIRAC THEORY OF THE ELECTRON
This chapter explores applications drawn from Dirac theory of the electron. In the treatment of electrons, it uses the following: an electron has spin 1/2; its magnetic dipole moment is very nearly twice that of the orbital model in which charge and mass move together; and the spin-orbit interaction is a factor of two off the value arrived at by the heuristic argument in the Chapter 7. The factor of two in the last effect is recovered if one does the Lorentz transformations in a more careful (and correct) way, but it is easier to get it from the relativistic Dirac equation. This equation applied to an electron also says the particle has spin 1/2, as observed, and it says the gyromagnetic ratio in equation (23.11) is g = 2. The small difference from the observed value is accounted for by the quantum treatment of the electromagnetic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信