运动学习中阻抗知识与内部模型的可靠性

António Oliveira Nzinga René, K. Okuhara, E. Domoto, Ryo Haruna
{"title":"运动学习中阻抗知识与内部模型的可靠性","authors":"António Oliveira Nzinga René, K. Okuhara, E. Domoto, Ryo Haruna","doi":"10.1109/iiai-aai53430.2021.00106","DOIUrl":null,"url":null,"abstract":"This study focuses on a type of perceptual-motor learning called tracing motion, a form of learning to trace a figure's contour and create a tracing motion experiment. First, the Kalman filter is applied to calculate the confidence level of the internal model. To achieve optimal motion, one can control the impedance, which is possible by setting appropriate parameters.","PeriodicalId":414070,"journal":{"name":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impedance Knowledge and Reliability of Internal Model in Motor Learning\",\"authors\":\"António Oliveira Nzinga René, K. Okuhara, E. Domoto, Ryo Haruna\",\"doi\":\"10.1109/iiai-aai53430.2021.00106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on a type of perceptual-motor learning called tracing motion, a form of learning to trace a figure's contour and create a tracing motion experiment. First, the Kalman filter is applied to calculate the confidence level of the internal model. To achieve optimal motion, one can control the impedance, which is possible by setting appropriate parameters.\",\"PeriodicalId\":414070,\"journal\":{\"name\":\"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iiai-aai53430.2021.00106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiai-aai53430.2021.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是一种称为追踪运动的感知运动学习,这是一种追踪图形轮廓并创建追踪运动实验的学习形式。首先,利用卡尔曼滤波计算内部模型的置信水平。为了实现最佳运动,可以通过设置适当的参数来控制阻抗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impedance Knowledge and Reliability of Internal Model in Motor Learning
This study focuses on a type of perceptual-motor learning called tracing motion, a form of learning to trace a figure's contour and create a tracing motion experiment. First, the Kalman filter is applied to calculate the confidence level of the internal model. To achieve optimal motion, one can control the impedance, which is possible by setting appropriate parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信