人工神经网络与聚类分析在生物特征识别中的比较

Leenesh Kumar Maisuria, Cheng Soon Ong, W. Lai
{"title":"人工神经网络与聚类分析在生物特征识别中的比较","authors":"Leenesh Kumar Maisuria, Cheng Soon Ong, W. Lai","doi":"10.1109/IJCNN.1999.836188","DOIUrl":null,"url":null,"abstract":"Password authentication is the most commonly used identification system in today's computer world. Its security can be enhanced using typing biometrics as a transparent layer of user authentication. Our research focuses on using the time period between keystrokes as the measure of the individual's typing pattern. The typing pattern of a particular individual can be represented by the weights of a fully trained multilayer perceptron. Alternatively, each user's typing pattern can be viewed as a cluster of measurements that can be differentiated from clusters of other users.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A comparison of artificial neural networks and cluster analysis for typing biometrics authentication\",\"authors\":\"Leenesh Kumar Maisuria, Cheng Soon Ong, W. Lai\",\"doi\":\"10.1109/IJCNN.1999.836188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Password authentication is the most commonly used identification system in today's computer world. Its security can be enhanced using typing biometrics as a transparent layer of user authentication. Our research focuses on using the time period between keystrokes as the measure of the individual's typing pattern. The typing pattern of a particular individual can be represented by the weights of a fully trained multilayer perceptron. Alternatively, each user's typing pattern can be viewed as a cluster of measurements that can be differentiated from clusters of other users.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.836188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.836188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

密码认证是当今计算机世界中最常用的身份识别系统。它的安全性可以使用输入生物识别技术作为用户身份验证的透明层来增强。我们的研究重点是使用按键之间的时间间隔来衡量个人的打字模式。一个特定个体的输入模式可以用一个完全训练好的多层感知器的权重来表示。或者,可以将每个用户的输入模式视为一组度量值,可以将其与其他用户的集群区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of artificial neural networks and cluster analysis for typing biometrics authentication
Password authentication is the most commonly used identification system in today's computer world. Its security can be enhanced using typing biometrics as a transparent layer of user authentication. Our research focuses on using the time period between keystrokes as the measure of the individual's typing pattern. The typing pattern of a particular individual can be represented by the weights of a fully trained multilayer perceptron. Alternatively, each user's typing pattern can be viewed as a cluster of measurements that can be differentiated from clusters of other users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信