从其投影区域估计具有已知凸形状的三维粒子的体积

B. Presles, J. Debayle, A. Cameirao, G. Févotte, J. Pinoli
{"title":"从其投影区域估计具有已知凸形状的三维粒子的体积","authors":"B. Presles, J. Debayle, A. Cameirao, G. Févotte, J. Pinoli","doi":"10.1109/IPTA.2010.5586763","DOIUrl":null,"url":null,"abstract":"The aim of this article is to present a new projective stereological image processing method to estimate the volume of a 3D particle with known convex shape from its different projected areas. In order to do so, an optimization algorithm is performed to determine the size parameters of the particle which maximize the likelihood function of the probability density associated with the observed projected areas. Therefore, the volume of the 3D particle can be deduced.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Volume estimation of 3D particles with known convex shapes from its projected areas\",\"authors\":\"B. Presles, J. Debayle, A. Cameirao, G. Févotte, J. Pinoli\",\"doi\":\"10.1109/IPTA.2010.5586763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article is to present a new projective stereological image processing method to estimate the volume of a 3D particle with known convex shape from its different projected areas. In order to do so, an optimization algorithm is performed to determine the size parameters of the particle which maximize the likelihood function of the probability density associated with the observed projected areas. Therefore, the volume of the 3D particle can be deduced.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文的目的是提出一种新的投影立体图像处理方法,从已知凸形状的三维粒子的不同投影区域估计其体积。为了做到这一点,执行优化算法来确定粒子的大小参数,使与观察到的投影区域相关的概率密度的似然函数最大化。因此,可以推导出三维粒子的体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume estimation of 3D particles with known convex shapes from its projected areas
The aim of this article is to present a new projective stereological image processing method to estimate the volume of a 3D particle with known convex shape from its different projected areas. In order to do so, an optimization algorithm is performed to determine the size parameters of the particle which maximize the likelihood function of the probability density associated with the observed projected areas. Therefore, the volume of the 3D particle can be deduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信