垂直分层土壤中接地系统的建模

A. Mujezinović, Nedis Dautbašić, I. Turkovic
{"title":"垂直分层土壤中接地系统的建模","authors":"A. Mujezinović, Nedis Dautbašić, I. Turkovic","doi":"10.2495/BE410071","DOIUrl":null,"url":null,"abstract":"ABSTRACT The main purpose of the substations grounding systems is to ensure integrity of substations equipment and safety of personnel in and outside of substation at the maximum fault currents. To meet safety requirements, grounding system should have a low as possible resistance. In order to achieve low resistance, grounding systems are designed in a way to achieve as large as possible contact surface between the grounding system conductors and the surrounding soil. On the other hand, cost – efficiency of the proposed solution must be taken into account. Therefore, to meet the technical criteria on the one hand and economic criteria on the other hand, grounding systems are composed from large number of horizontal, vertical and inclined galvanic connected unisolated conductors that in most practical cases form complex geometries. Additionally, soil in which grounding systems are placed is almost always composed of a number of layers with different electric conductivity. In this paper, numerical model based on the indirect boundary element method is presented for calculation of grounding system parameters placed into the vertically layered soil.","PeriodicalId":208184,"journal":{"name":"Boundary Elements and other Mesh Reduction Methods XLI","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELLING OF GROUNDING SYSTEM PLACED INTO VERTICALLY LAYERED SOIL\",\"authors\":\"A. Mujezinović, Nedis Dautbašić, I. Turkovic\",\"doi\":\"10.2495/BE410071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The main purpose of the substations grounding systems is to ensure integrity of substations equipment and safety of personnel in and outside of substation at the maximum fault currents. To meet safety requirements, grounding system should have a low as possible resistance. In order to achieve low resistance, grounding systems are designed in a way to achieve as large as possible contact surface between the grounding system conductors and the surrounding soil. On the other hand, cost – efficiency of the proposed solution must be taken into account. Therefore, to meet the technical criteria on the one hand and economic criteria on the other hand, grounding systems are composed from large number of horizontal, vertical and inclined galvanic connected unisolated conductors that in most practical cases form complex geometries. Additionally, soil in which grounding systems are placed is almost always composed of a number of layers with different electric conductivity. In this paper, numerical model based on the indirect boundary element method is presented for calculation of grounding system parameters placed into the vertically layered soil.\",\"PeriodicalId\":208184,\"journal\":{\"name\":\"Boundary Elements and other Mesh Reduction Methods XLI\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Elements and other Mesh Reduction Methods XLI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/BE410071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Elements and other Mesh Reduction Methods XLI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/BE410071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变电站接地系统的主要目的是在最大故障电流下保证变电站设备的完整性和变电站内外人员的安全。为满足安全要求,接地系统应具有尽可能低的电阻。为了实现低电阻,接地系统的设计使接地系统导体与周围土壤的接触面尽可能大。另一方面,所提出的解决方案的成本效益也必须加以考虑。因此,为了满足技术标准和经济标准,接地系统由大量水平、垂直和倾斜的电连接的非隔离导体组成,这些导体在大多数实际情况下形成复杂的几何形状。此外,放置接地系统的土壤几乎总是由许多具有不同电导率的层组成。本文提出了基于间接边界元法的垂直分层土中接地系统参数计算的数值模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODELLING OF GROUNDING SYSTEM PLACED INTO VERTICALLY LAYERED SOIL
ABSTRACT The main purpose of the substations grounding systems is to ensure integrity of substations equipment and safety of personnel in and outside of substation at the maximum fault currents. To meet safety requirements, grounding system should have a low as possible resistance. In order to achieve low resistance, grounding systems are designed in a way to achieve as large as possible contact surface between the grounding system conductors and the surrounding soil. On the other hand, cost – efficiency of the proposed solution must be taken into account. Therefore, to meet the technical criteria on the one hand and economic criteria on the other hand, grounding systems are composed from large number of horizontal, vertical and inclined galvanic connected unisolated conductors that in most practical cases form complex geometries. Additionally, soil in which grounding systems are placed is almost always composed of a number of layers with different electric conductivity. In this paper, numerical model based on the indirect boundary element method is presented for calculation of grounding system parameters placed into the vertically layered soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信