独立太阳能光伏系统健康状态评估的远程监测数据挖掘

P. Davison, N. Wade, D. Greenwood
{"title":"独立太阳能光伏系统健康状态评估的远程监测数据挖掘","authors":"P. Davison, N. Wade, D. Greenwood","doi":"10.1109/POWERAFRICA.2016.7556599","DOIUrl":null,"url":null,"abstract":"In this paper, we use data mining techniques and formulate suitable assessment metrics to derive estimates of the State of Health (SOH) of stand-alone solar home systems. Data is provided from a company with significant numbers of such systems in Africa. The systems in question contain a PV panel, lead-acid battery and a series of DC loads. Data mining allows us to not only estimate the SOH of the battery, but also infer the health of other system components.","PeriodicalId":177444,"journal":{"name":"2016 IEEE PES PowerAfrica","volume":"495 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data mining of remote monitored stand-alone solar PV systems for State of Health estimation\",\"authors\":\"P. Davison, N. Wade, D. Greenwood\",\"doi\":\"10.1109/POWERAFRICA.2016.7556599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use data mining techniques and formulate suitable assessment metrics to derive estimates of the State of Health (SOH) of stand-alone solar home systems. Data is provided from a company with significant numbers of such systems in Africa. The systems in question contain a PV panel, lead-acid battery and a series of DC loads. Data mining allows us to not only estimate the SOH of the battery, but also infer the health of other system components.\",\"PeriodicalId\":177444,\"journal\":{\"name\":\"2016 IEEE PES PowerAfrica\",\"volume\":\"495 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERAFRICA.2016.7556599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2016.7556599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们使用数据挖掘技术并制定合适的评估指标来得出独立太阳能家庭系统的健康状况(SOH)的估计。数据由一家在非洲拥有大量此类系统的公司提供。该系统包含一个光伏板、铅酸电池和一系列直流负载。数据挖掘使我们不仅可以估计电池的SOH,还可以推断其他系统组件的健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data mining of remote monitored stand-alone solar PV systems for State of Health estimation
In this paper, we use data mining techniques and formulate suitable assessment metrics to derive estimates of the State of Health (SOH) of stand-alone solar home systems. Data is provided from a company with significant numbers of such systems in Africa. The systems in question contain a PV panel, lead-acid battery and a series of DC loads. Data mining allows us to not only estimate the SOH of the battery, but also infer the health of other system components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信