Francois Buet-Golfouse, Hans Roggeman, Islam Utyagulov
{"title":"鲁棒协同学习序列建模","authors":"Francois Buet-Golfouse, Hans Roggeman, Islam Utyagulov","doi":"10.1109/icassp43922.2022.9746494","DOIUrl":null,"url":null,"abstract":"Current deep learning techniques for RNA classification suffer from over-fitting and lack of reproducibility. We show that by introducing robustness by design in both CNN and RNN algorithms, we are able to achieve standalone state-of-the-art accuracy. By constructing model-agnostic robustness checks and reusing features obtained from both architectures, we build a collaborative framework that improves performance and stability.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Collaborative Learning for Sequence Modelling\",\"authors\":\"Francois Buet-Golfouse, Hans Roggeman, Islam Utyagulov\",\"doi\":\"10.1109/icassp43922.2022.9746494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current deep learning techniques for RNA classification suffer from over-fitting and lack of reproducibility. We show that by introducing robustness by design in both CNN and RNN algorithms, we are able to achieve standalone state-of-the-art accuracy. By constructing model-agnostic robustness checks and reusing features obtained from both architectures, we build a collaborative framework that improves performance and stability.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Collaborative Learning for Sequence Modelling
Current deep learning techniques for RNA classification suffer from over-fitting and lack of reproducibility. We show that by introducing robustness by design in both CNN and RNN algorithms, we are able to achieve standalone state-of-the-art accuracy. By constructing model-agnostic robustness checks and reusing features obtained from both architectures, we build a collaborative framework that improves performance and stability.