鲁棒协同学习序列建模

Francois Buet-Golfouse, Hans Roggeman, Islam Utyagulov
{"title":"鲁棒协同学习序列建模","authors":"Francois Buet-Golfouse, Hans Roggeman, Islam Utyagulov","doi":"10.1109/icassp43922.2022.9746494","DOIUrl":null,"url":null,"abstract":"Current deep learning techniques for RNA classification suffer from over-fitting and lack of reproducibility. We show that by introducing robustness by design in both CNN and RNN algorithms, we are able to achieve standalone state-of-the-art accuracy. By constructing model-agnostic robustness checks and reusing features obtained from both architectures, we build a collaborative framework that improves performance and stability.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Collaborative Learning for Sequence Modelling\",\"authors\":\"Francois Buet-Golfouse, Hans Roggeman, Islam Utyagulov\",\"doi\":\"10.1109/icassp43922.2022.9746494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current deep learning techniques for RNA classification suffer from over-fitting and lack of reproducibility. We show that by introducing robustness by design in both CNN and RNN algorithms, we are able to achieve standalone state-of-the-art accuracy. By constructing model-agnostic robustness checks and reusing features obtained from both architectures, we build a collaborative framework that improves performance and stability.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前用于RNA分类的深度学习技术存在过拟合和缺乏可重复性的问题。我们表明,通过在CNN和RNN算法中引入鲁棒性设计,我们能够实现独立的最先进的精度。通过构建与模型无关的鲁棒性检查和重用从两个体系结构中获得的特征,我们构建了一个提高性能和稳定性的协作框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Collaborative Learning for Sequence Modelling
Current deep learning techniques for RNA classification suffer from over-fitting and lack of reproducibility. We show that by introducing robustness by design in both CNN and RNN algorithms, we are able to achieve standalone state-of-the-art accuracy. By constructing model-agnostic robustness checks and reusing features obtained from both architectures, we build a collaborative framework that improves performance and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信