五自由度机器人的离散时间分散神经反步控制器

R. García-Hernández, E. Sánchez, M. Saad, E. Bayro-Corrochano
{"title":"五自由度机器人的离散时间分散神经反步控制器","authors":"R. García-Hernández, E. Sánchez, M. Saad, E. Bayro-Corrochano","doi":"10.1109/MED.2009.5164600","DOIUrl":null,"url":null,"abstract":"This paper deals with adaptive trajectory tracking for a five DOF robot manipulator, A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The applicability of the proposed scheme is illustrated via simulations.","PeriodicalId":422386,"journal":{"name":"2009 17th Mediterranean Conference on Control and Automation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete-time decentralized neural backstepping controller for a five DOF robot manipulator\",\"authors\":\"R. García-Hernández, E. Sánchez, M. Saad, E. Bayro-Corrochano\",\"doi\":\"10.1109/MED.2009.5164600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with adaptive trajectory tracking for a five DOF robot manipulator, A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The applicability of the proposed scheme is illustrated via simulations.\",\"PeriodicalId\":422386,\"journal\":{\"name\":\"2009 17th Mediterranean Conference on Control and Automation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2009.5164600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2009.5164600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对五自由度机器人的自适应轨迹跟踪问题,采用高阶神经网络(HONN)逼近由步进法设计的分散控制律,并将其应用于块严格反馈形式(BSFF)。通过扩展卡尔曼滤波(EKF)算法在线学习HONN。通过仿真验证了该方案的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-time decentralized neural backstepping controller for a five DOF robot manipulator
This paper deals with adaptive trajectory tracking for a five DOF robot manipulator, A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The applicability of the proposed scheme is illustrated via simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信