主题演讲:分析创新的领域特定模型

Bob Blainey
{"title":"主题演讲:分析创新的领域特定模型","authors":"Bob Blainey","doi":"10.1145/2628071.2635932","DOIUrl":null,"url":null,"abstract":"Big data is a transformational force for businesses and organizations of every stripe. The ability to rapidly and accurately derive insights from massive amounts of data is becoming a critical competitive differentiator so it is driving continuous innovation among business analysts, data scientists, and computer engineers. Two of the most important success factors for analytic techniques are the ability to quickly develop and incrementally evolve them to suit changing business needs and the ability to scale these techniques using parallel computing to process huge collections of data. Unfortunately, these goals are often at odds with each other because innovation at the algorithm and data model level requires a combination of domain knowledge and expertise in data analysis while achieving high scale demands expertise in parallel computing, cloud computing and even hardware acceleration. In this talk, I will examine various approaches to bridging these two goals, with a focus on domain-specific models that simultaneously improve the agility of analytics development and the achievement of efficient parallel scaling.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keynote: Domain-specific models for innovation in analytics\",\"authors\":\"Bob Blainey\",\"doi\":\"10.1145/2628071.2635932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data is a transformational force for businesses and organizations of every stripe. The ability to rapidly and accurately derive insights from massive amounts of data is becoming a critical competitive differentiator so it is driving continuous innovation among business analysts, data scientists, and computer engineers. Two of the most important success factors for analytic techniques are the ability to quickly develop and incrementally evolve them to suit changing business needs and the ability to scale these techniques using parallel computing to process huge collections of data. Unfortunately, these goals are often at odds with each other because innovation at the algorithm and data model level requires a combination of domain knowledge and expertise in data analysis while achieving high scale demands expertise in parallel computing, cloud computing and even hardware acceleration. In this talk, I will examine various approaches to bridging these two goals, with a focus on domain-specific models that simultaneously improve the agility of analytics development and the achievement of efficient parallel scaling.\",\"PeriodicalId\":263670,\"journal\":{\"name\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2628071.2635932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2635932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于各行各业的企业和组织来说,大数据是一股变革的力量。从海量数据中快速准确地获取见解的能力正在成为一个关键的竞争优势,因此它正在推动业务分析师、数据科学家和计算机工程师之间的持续创新。分析技术的两个最重要的成功因素是快速开发和逐步发展它们以适应不断变化的业务需求的能力,以及使用并行计算扩展这些技术以处理大量数据集合的能力。不幸的是,这些目标往往相互矛盾,因为算法和数据模型层面的创新需要结合领域知识和数据分析方面的专业知识,而实现大规模则需要并行计算、云计算甚至硬件加速方面的专业知识。在这次演讲中,我将研究各种方法来连接这两个目标,重点是领域特定的模型,同时提高分析开发的敏捷性和实现有效的并行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keynote: Domain-specific models for innovation in analytics
Big data is a transformational force for businesses and organizations of every stripe. The ability to rapidly and accurately derive insights from massive amounts of data is becoming a critical competitive differentiator so it is driving continuous innovation among business analysts, data scientists, and computer engineers. Two of the most important success factors for analytic techniques are the ability to quickly develop and incrementally evolve them to suit changing business needs and the ability to scale these techniques using parallel computing to process huge collections of data. Unfortunately, these goals are often at odds with each other because innovation at the algorithm and data model level requires a combination of domain knowledge and expertise in data analysis while achieving high scale demands expertise in parallel computing, cloud computing and even hardware acceleration. In this talk, I will examine various approaches to bridging these two goals, with a focus on domain-specific models that simultaneously improve the agility of analytics development and the achievement of efficient parallel scaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信