基于深度神经网络的时尚产业生成模型

Ildar Lomov, Ilya Makarov
{"title":"基于深度神经网络的时尚产业生成模型","authors":"Ildar Lomov, Ilya Makarov","doi":"10.1109/CAIS.2019.8769486","DOIUrl":null,"url":null,"abstract":"The progress of deep learning models in image and video processing leads to new artificial intelligence applications in Fashion industry. We consider the application of Generative Adversarial Networks and Neural Style Transfer for Digital Fashion presented as Virtual fashion for trying new clothes. Our model generate humans in clothes with respect to different fashion preferences, color layouts and fashion style. We propose that the virtual fashion industry will be highly impacted by accuracy of generating personalized human model taking into account different aspects of product and human preferences. We compare our model with state-of-art VITON model and show that using new perceptual loss in deep neural network architecture lead to better qualitative results in generating humans in clothes.","PeriodicalId":220129,"journal":{"name":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generative Models for Fashion Industry using Deep Neural Networks\",\"authors\":\"Ildar Lomov, Ilya Makarov\",\"doi\":\"10.1109/CAIS.2019.8769486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The progress of deep learning models in image and video processing leads to new artificial intelligence applications in Fashion industry. We consider the application of Generative Adversarial Networks and Neural Style Transfer for Digital Fashion presented as Virtual fashion for trying new clothes. Our model generate humans in clothes with respect to different fashion preferences, color layouts and fashion style. We propose that the virtual fashion industry will be highly impacted by accuracy of generating personalized human model taking into account different aspects of product and human preferences. We compare our model with state-of-art VITON model and show that using new perceptual loss in deep neural network architecture lead to better qualitative results in generating humans in clothes.\",\"PeriodicalId\":220129,\"journal\":{\"name\":\"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIS.2019.8769486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIS.2019.8769486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度学习模型在图像和视频处理方面的进展导致人工智能在时尚行业的新应用。我们考虑了生成对抗网络和神经风格迁移在数字时尚中的应用,作为虚拟时尚来尝试新衣服。我们的模型根据不同的时尚偏好、色彩布局和时尚风格来生成穿着衣服的人。我们认为,考虑到产品的不同方面和人类偏好,生成个性化人体模型的准确性将高度影响虚拟时尚产业。我们将我们的模型与最先进的VITON模型进行了比较,结果表明,在深度神经网络架构中使用新的感知损失,可以在生成穿着衣服的人的过程中获得更好的定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Models for Fashion Industry using Deep Neural Networks
The progress of deep learning models in image and video processing leads to new artificial intelligence applications in Fashion industry. We consider the application of Generative Adversarial Networks and Neural Style Transfer for Digital Fashion presented as Virtual fashion for trying new clothes. Our model generate humans in clothes with respect to different fashion preferences, color layouts and fashion style. We propose that the virtual fashion industry will be highly impacted by accuracy of generating personalized human model taking into account different aspects of product and human preferences. We compare our model with state-of-art VITON model and show that using new perceptual loss in deep neural network architecture lead to better qualitative results in generating humans in clothes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信