{"title":"基于签名网络的非负矩阵分解预测药物-疾病关联及其影响","authors":"Wen Zhang, Feng Huang, Xiang Yue, Xiaoting Lu, Weitai Yang, Zhishuai Li, Feng Liu","doi":"10.1109/BIBM.2018.8621191","DOIUrl":null,"url":null,"abstract":"Predicting drug-disease associations using computational methods benefits drug repositioning. Drug-disease associations are events that drugs exert effects on diseases, there are different effects about drug-disease associations. For example, drug-disease associations are annotated as therapeutic or marker/mechanism (non-therapeutic) in Comparative Toxicogenomics database (CTD). However, existing association prediction methods ignore effects that drugs exert on diseases. In this paper, we propose a signed network-based nonnegative matrix factorization method (SNNMF) to predict drug-disease associations and their effects. First, drug-disease associations are represented as a signed bipartite network with two types of links for therapeutic effects and non-therapeutic effects. After decomposing the network into two subnetworks, SNNMF aims to approximate the association matrix of each subnetwork by two nonnegative matrices, which are low-dimensional latent representations for drugs and diseases respectively, and diseases in two subnetworks share the same latent representations. In the computational experiments, SNNMF performs well in predicting effects of drug-disease associations. Moreover, SNNMF accurately predicts drug-disease associations and outperforms existing association prediction methods. Case studies show that SNNMF helps to find out novel drug-disease associations that are not included in CTD, and simultaneously predicts their therapeutic effects.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"671 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prediction of Drug-Disease Associations and Their Effects by Signed Network-Based Nonnegative Matrix Factorization\",\"authors\":\"Wen Zhang, Feng Huang, Xiang Yue, Xiaoting Lu, Weitai Yang, Zhishuai Li, Feng Liu\",\"doi\":\"10.1109/BIBM.2018.8621191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting drug-disease associations using computational methods benefits drug repositioning. Drug-disease associations are events that drugs exert effects on diseases, there are different effects about drug-disease associations. For example, drug-disease associations are annotated as therapeutic or marker/mechanism (non-therapeutic) in Comparative Toxicogenomics database (CTD). However, existing association prediction methods ignore effects that drugs exert on diseases. In this paper, we propose a signed network-based nonnegative matrix factorization method (SNNMF) to predict drug-disease associations and their effects. First, drug-disease associations are represented as a signed bipartite network with two types of links for therapeutic effects and non-therapeutic effects. After decomposing the network into two subnetworks, SNNMF aims to approximate the association matrix of each subnetwork by two nonnegative matrices, which are low-dimensional latent representations for drugs and diseases respectively, and diseases in two subnetworks share the same latent representations. In the computational experiments, SNNMF performs well in predicting effects of drug-disease associations. Moreover, SNNMF accurately predicts drug-disease associations and outperforms existing association prediction methods. Case studies show that SNNMF helps to find out novel drug-disease associations that are not included in CTD, and simultaneously predicts their therapeutic effects.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"671 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Drug-Disease Associations and Their Effects by Signed Network-Based Nonnegative Matrix Factorization
Predicting drug-disease associations using computational methods benefits drug repositioning. Drug-disease associations are events that drugs exert effects on diseases, there are different effects about drug-disease associations. For example, drug-disease associations are annotated as therapeutic or marker/mechanism (non-therapeutic) in Comparative Toxicogenomics database (CTD). However, existing association prediction methods ignore effects that drugs exert on diseases. In this paper, we propose a signed network-based nonnegative matrix factorization method (SNNMF) to predict drug-disease associations and their effects. First, drug-disease associations are represented as a signed bipartite network with two types of links for therapeutic effects and non-therapeutic effects. After decomposing the network into two subnetworks, SNNMF aims to approximate the association matrix of each subnetwork by two nonnegative matrices, which are low-dimensional latent representations for drugs and diseases respectively, and diseases in two subnetworks share the same latent representations. In the computational experiments, SNNMF performs well in predicting effects of drug-disease associations. Moreover, SNNMF accurately predicts drug-disease associations and outperforms existing association prediction methods. Case studies show that SNNMF helps to find out novel drug-disease associations that are not included in CTD, and simultaneously predicts their therapeutic effects.