Recen Özaln, Çağrı Kaymak, Özal Yıldırım, A. Uçar, Y. Demir, C. Güzelı̇ş
{"title":"基于视觉的人形机器人运动深度强化学习的实现","authors":"Recen Özaln, Çağrı Kaymak, Özal Yıldırım, A. Uçar, Y. Demir, C. Güzelı̇ş","doi":"10.1109/INISTA.2019.8778209","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning (DRL) exhibits a promising approach for controlling humanoid robot locomotion. However, only values relating sensors such as IMU, gyroscope, and GPS are not sufficient robots to learn their locomotion skills. In this article, we aim to show the success of vision based DRL. We propose a new vision based deep reinforcement learning algorithm for the locomotion of the Robotis-op2 humanoid robot for the first time. In experimental setup, we construct the locomotion of humanoid robot in a specific environment in the Webots software. We use Double Dueling Q Networks (D3QN) and Deep Q Networks (DQN) that are a kind of reinforcement learning algorithm. We present the performance of vision based DRL algorithm on a locomotion experiment. The experimental results show that D3QN is better than DQN in that stable locomotion and fast training and the vision based DRL algorithms will be successfully able to use at the other complex environments and applications.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Implementation of Vision Based Deep Reinforcement Learning for Humanoid Robot Locomotion\",\"authors\":\"Recen Özaln, Çağrı Kaymak, Özal Yıldırım, A. Uçar, Y. Demir, C. Güzelı̇ş\",\"doi\":\"10.1109/INISTA.2019.8778209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep reinforcement learning (DRL) exhibits a promising approach for controlling humanoid robot locomotion. However, only values relating sensors such as IMU, gyroscope, and GPS are not sufficient robots to learn their locomotion skills. In this article, we aim to show the success of vision based DRL. We propose a new vision based deep reinforcement learning algorithm for the locomotion of the Robotis-op2 humanoid robot for the first time. In experimental setup, we construct the locomotion of humanoid robot in a specific environment in the Webots software. We use Double Dueling Q Networks (D3QN) and Deep Q Networks (DQN) that are a kind of reinforcement learning algorithm. We present the performance of vision based DRL algorithm on a locomotion experiment. The experimental results show that D3QN is better than DQN in that stable locomotion and fast training and the vision based DRL algorithms will be successfully able to use at the other complex environments and applications.\",\"PeriodicalId\":262143,\"journal\":{\"name\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2019.8778209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Implementation of Vision Based Deep Reinforcement Learning for Humanoid Robot Locomotion
Deep reinforcement learning (DRL) exhibits a promising approach for controlling humanoid robot locomotion. However, only values relating sensors such as IMU, gyroscope, and GPS are not sufficient robots to learn their locomotion skills. In this article, we aim to show the success of vision based DRL. We propose a new vision based deep reinforcement learning algorithm for the locomotion of the Robotis-op2 humanoid robot for the first time. In experimental setup, we construct the locomotion of humanoid robot in a specific environment in the Webots software. We use Double Dueling Q Networks (D3QN) and Deep Q Networks (DQN) that are a kind of reinforcement learning algorithm. We present the performance of vision based DRL algorithm on a locomotion experiment. The experimental results show that D3QN is better than DQN in that stable locomotion and fast training and the vision based DRL algorithms will be successfully able to use at the other complex environments and applications.