Z. Abidin, Irfan Ghani Fadhlurrahman, I. Akbar, Risky Utama Putra, A. T. Prakoso, M. Z. Kadir, Astuti Astuti, A. Syahrom, M. I. Ammarullah, J. Jamari, H. Basri
{"title":"3D打印PLA支架力学性能的数值研究","authors":"Z. Abidin, Irfan Ghani Fadhlurrahman, I. Akbar, Risky Utama Putra, A. T. Prakoso, M. Z. Kadir, Astuti Astuti, A. Syahrom, M. I. Ammarullah, J. Jamari, H. Basri","doi":"10.2991/ahe.k.220205.015","DOIUrl":null,"url":null,"abstract":"This study aims to determine the dimensional accuracy and porosity of polylactic acid scaffold using 3D printing and the value of the effective elastic modulus. The main contribution of this research is to obtain the most suitable scaffold porosity for use as cancellous bone implants. It was obtained by comparing the dimensions and porosity of the printed scaffold with the CAD model and its effective modulus of elasticity with the cancellous bone. The 3D printing machine makes four scaffolds with varying porosity and one scaffold with 0% porosity. Scaffold dimensions were measured using a caliper. Measuring the volume of solids using a measuring cup and ethanol gives a porosity value, while as a benchmark for the total volume of the scaffold using 0% porosity. Computer simulation with MSC Marc software produces the effective modulus of elasticity. Scaffold with porosity variants of 42.9% and 58.1% showed that the results of the printed scaffold were perfect, while the porosity of 22.3% and 73.4% gave wrong impressions because they had too small pores or features. On the other hand, scaffolds with porosity of 58.1% and 73.4% had adequate elastic modulus corresponding to the span of cancellous bone. It was concluded that the porosity of the 58.1% scaffold was the best for use as a cancellous bone implant with accurate fabrication results.","PeriodicalId":177278,"journal":{"name":"Atlantis Highlights in Engineering","volume":"40 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical Investigation of the Mechanical Properties of 3D Printed PLA Scaffold\",\"authors\":\"Z. Abidin, Irfan Ghani Fadhlurrahman, I. Akbar, Risky Utama Putra, A. T. Prakoso, M. Z. Kadir, Astuti Astuti, A. Syahrom, M. I. Ammarullah, J. Jamari, H. Basri\",\"doi\":\"10.2991/ahe.k.220205.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to determine the dimensional accuracy and porosity of polylactic acid scaffold using 3D printing and the value of the effective elastic modulus. The main contribution of this research is to obtain the most suitable scaffold porosity for use as cancellous bone implants. It was obtained by comparing the dimensions and porosity of the printed scaffold with the CAD model and its effective modulus of elasticity with the cancellous bone. The 3D printing machine makes four scaffolds with varying porosity and one scaffold with 0% porosity. Scaffold dimensions were measured using a caliper. Measuring the volume of solids using a measuring cup and ethanol gives a porosity value, while as a benchmark for the total volume of the scaffold using 0% porosity. Computer simulation with MSC Marc software produces the effective modulus of elasticity. Scaffold with porosity variants of 42.9% and 58.1% showed that the results of the printed scaffold were perfect, while the porosity of 22.3% and 73.4% gave wrong impressions because they had too small pores or features. On the other hand, scaffolds with porosity of 58.1% and 73.4% had adequate elastic modulus corresponding to the span of cancellous bone. It was concluded that the porosity of the 58.1% scaffold was the best for use as a cancellous bone implant with accurate fabrication results.\",\"PeriodicalId\":177278,\"journal\":{\"name\":\"Atlantis Highlights in Engineering\",\"volume\":\"40 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atlantis Highlights in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ahe.k.220205.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atlantis Highlights in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ahe.k.220205.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Investigation of the Mechanical Properties of 3D Printed PLA Scaffold
This study aims to determine the dimensional accuracy and porosity of polylactic acid scaffold using 3D printing and the value of the effective elastic modulus. The main contribution of this research is to obtain the most suitable scaffold porosity for use as cancellous bone implants. It was obtained by comparing the dimensions and porosity of the printed scaffold with the CAD model and its effective modulus of elasticity with the cancellous bone. The 3D printing machine makes four scaffolds with varying porosity and one scaffold with 0% porosity. Scaffold dimensions were measured using a caliper. Measuring the volume of solids using a measuring cup and ethanol gives a porosity value, while as a benchmark for the total volume of the scaffold using 0% porosity. Computer simulation with MSC Marc software produces the effective modulus of elasticity. Scaffold with porosity variants of 42.9% and 58.1% showed that the results of the printed scaffold were perfect, while the porosity of 22.3% and 73.4% gave wrong impressions because they had too small pores or features. On the other hand, scaffolds with porosity of 58.1% and 73.4% had adequate elastic modulus corresponding to the span of cancellous bone. It was concluded that the porosity of the 58.1% scaffold was the best for use as a cancellous bone implant with accurate fabrication results.