基于机器学习技术的供水系统入侵检测

N. Mabunda, Daniel T. Ramotsoela, A. Abu-Mahfouz
{"title":"基于机器学习技术的供水系统入侵检测","authors":"N. Mabunda, Daniel T. Ramotsoela, A. Abu-Mahfouz","doi":"10.1109/ICAIoT57170.2022.10121852","DOIUrl":null,"url":null,"abstract":"Water distribution systems/networks (WDS/WDN) use complex pipe networks to distribute water from reservoirs, tanks and rivers to consumers. Over the years, the water industry has deployed SCADA (Supervisory Control and Data Acquisition) systems into WDNs so that there is a uniform water balance and so that the demands of a fast-growing world population are met optimally. These SCADA systems use standard protocols, hardware and software and thus are targeted due to their propensity to connect to institutional networks and the internet. Accurate and timeous detection of these attacks is necessary to protect critical infrastructure. Recently, Machine learning (ML) models have been initiated so that these cyber-attacks can be detected. These models can be categorized as Regression and prediction-based models, Classification-based models and Min-max based models. This paper will serve to cover the research gap in intrusion detection using machine learning, specifically in water distribution networks. This paper will aid in understanding which machine learning techniques are best suited for water distribution applications.","PeriodicalId":297735,"journal":{"name":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrusion Detection In Water Distribution Systems Using Machine Learning Techniques\",\"authors\":\"N. Mabunda, Daniel T. Ramotsoela, A. Abu-Mahfouz\",\"doi\":\"10.1109/ICAIoT57170.2022.10121852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water distribution systems/networks (WDS/WDN) use complex pipe networks to distribute water from reservoirs, tanks and rivers to consumers. Over the years, the water industry has deployed SCADA (Supervisory Control and Data Acquisition) systems into WDNs so that there is a uniform water balance and so that the demands of a fast-growing world population are met optimally. These SCADA systems use standard protocols, hardware and software and thus are targeted due to their propensity to connect to institutional networks and the internet. Accurate and timeous detection of these attacks is necessary to protect critical infrastructure. Recently, Machine learning (ML) models have been initiated so that these cyber-attacks can be detected. These models can be categorized as Regression and prediction-based models, Classification-based models and Min-max based models. This paper will serve to cover the research gap in intrusion detection using machine learning, specifically in water distribution networks. This paper will aid in understanding which machine learning techniques are best suited for water distribution applications.\",\"PeriodicalId\":297735,\"journal\":{\"name\":\"2022 International Conference on Artificial Intelligence of Things (ICAIoT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Artificial Intelligence of Things (ICAIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIoT57170.2022.10121852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIoT57170.2022.10121852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水分配系统/网络(WDS/WDN)使用复杂的管网将水库、水箱和河流中的水分配给消费者。多年来,水务行业已将SCADA(监控和数据采集)系统部署到水务网络中,以实现统一的水资源平衡,从而最佳地满足快速增长的世界人口的需求。这些SCADA系统使用标准协议、硬件和软件,因此由于它们倾向于连接到机构网络和互联网,因此成为攻击目标。准确和及时地检测这些攻击对于保护关键基础设施是必要的。最近,机器学习(ML)模型已经启动,以便可以检测到这些网络攻击。这些模型可分为基于回归和预测的模型、基于分类的模型和基于最小-最大的模型。本文将填补使用机器学习进行入侵检测的研究空白,特别是在配水网络中。本文将有助于理解哪种机器学习技术最适合配水应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion Detection In Water Distribution Systems Using Machine Learning Techniques
Water distribution systems/networks (WDS/WDN) use complex pipe networks to distribute water from reservoirs, tanks and rivers to consumers. Over the years, the water industry has deployed SCADA (Supervisory Control and Data Acquisition) systems into WDNs so that there is a uniform water balance and so that the demands of a fast-growing world population are met optimally. These SCADA systems use standard protocols, hardware and software and thus are targeted due to their propensity to connect to institutional networks and the internet. Accurate and timeous detection of these attacks is necessary to protect critical infrastructure. Recently, Machine learning (ML) models have been initiated so that these cyber-attacks can be detected. These models can be categorized as Regression and prediction-based models, Classification-based models and Min-max based models. This paper will serve to cover the research gap in intrusion detection using machine learning, specifically in water distribution networks. This paper will aid in understanding which machine learning techniques are best suited for water distribution applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信