{"title":"自动化智能电网解决方案架构设计","authors":"M. Masi, Tanja Pavleska, Helder Aranha","doi":"10.1109/SmartGridComm.2018.8587457","DOIUrl":null,"url":null,"abstract":"The Energy sector and Smart Grids face great interoperability challenges, with virtual power plants (VPPs) being a major representative. In this paper, we present a methodology that automates and facilitates the design of solution architectures, producing a structured approach for building interoperable complex systems. Building on solid approaches that incorporate theory and practice of the healthcare enterprise and the Smart Grid sector, our methodology automates critical and time-consuming design steps that are currently performed manually. To accomplish the automation, we enhance and formalize validated principles and frameworks, but moreover, we introduce novel mechanisms to cater for architecture solution correctness, completeness and cohesiveness. The proposed methodology is applied to a VPP use case to demonstrate the applicability of such an architectural approach to other domains as well. An implementation tool of the methodology is also provided to support the practicality of the approach and to enable testability and result-reproducibility.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automating Smart Grid Solution Architecture Design\",\"authors\":\"M. Masi, Tanja Pavleska, Helder Aranha\",\"doi\":\"10.1109/SmartGridComm.2018.8587457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Energy sector and Smart Grids face great interoperability challenges, with virtual power plants (VPPs) being a major representative. In this paper, we present a methodology that automates and facilitates the design of solution architectures, producing a structured approach for building interoperable complex systems. Building on solid approaches that incorporate theory and practice of the healthcare enterprise and the Smart Grid sector, our methodology automates critical and time-consuming design steps that are currently performed manually. To accomplish the automation, we enhance and formalize validated principles and frameworks, but moreover, we introduce novel mechanisms to cater for architecture solution correctness, completeness and cohesiveness. The proposed methodology is applied to a VPP use case to demonstrate the applicability of such an architectural approach to other domains as well. An implementation tool of the methodology is also provided to support the practicality of the approach and to enable testability and result-reproducibility.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Energy sector and Smart Grids face great interoperability challenges, with virtual power plants (VPPs) being a major representative. In this paper, we present a methodology that automates and facilitates the design of solution architectures, producing a structured approach for building interoperable complex systems. Building on solid approaches that incorporate theory and practice of the healthcare enterprise and the Smart Grid sector, our methodology automates critical and time-consuming design steps that are currently performed manually. To accomplish the automation, we enhance and formalize validated principles and frameworks, but moreover, we introduce novel mechanisms to cater for architecture solution correctness, completeness and cohesiveness. The proposed methodology is applied to a VPP use case to demonstrate the applicability of such an architectural approach to other domains as well. An implementation tool of the methodology is also provided to support the practicality of the approach and to enable testability and result-reproducibility.