碳足迹最大的人口统计研究

XuTony, KhaliliShayan
{"title":"碳足迹最大的人口统计研究","authors":"XuTony, KhaliliShayan","doi":"10.17975/sfj-2019-009","DOIUrl":null,"url":null,"abstract":"Our aim was to determine factors predicting greenhouse gas emissions per capita and to identify the demographics having the greatest carbon footprint. The relationship between socioeconomic trends and greenhouse gas emissions is controversial, given that many past studies evaluated only a single factor. We analyzed the relationship between global greenhouse gas emissions per capita and literacy rate, GDP per capita, urban population percentage, adolescent fertility rate, unemployment percentage, percent of agricultural land, research and development expenditure, renewable energy consumption, food production, population growth, mobile cellular subscriptions, air transport freight, and forest area. We gathered data from 217 countries spanning a period of 20 years; 1993 to 2012. We analyzed the data using multiple regression models. We concluded food production, renewable energy consumption, air transport, mobile cellular subscriptions, literacy rate, and population growth have the greatest impact on predicting greenhouse gas (GHG) emissions in our model, suggesting the demographic with the greatest carbon footprint are wealthy, educated people living in urban centers.","PeriodicalId":268438,"journal":{"name":"STEM Fellowship Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study into the Demographics Having the Greatest Carbon Footprint\",\"authors\":\"XuTony, KhaliliShayan\",\"doi\":\"10.17975/sfj-2019-009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim was to determine factors predicting greenhouse gas emissions per capita and to identify the demographics having the greatest carbon footprint. The relationship between socioeconomic trends and greenhouse gas emissions is controversial, given that many past studies evaluated only a single factor. We analyzed the relationship between global greenhouse gas emissions per capita and literacy rate, GDP per capita, urban population percentage, adolescent fertility rate, unemployment percentage, percent of agricultural land, research and development expenditure, renewable energy consumption, food production, population growth, mobile cellular subscriptions, air transport freight, and forest area. We gathered data from 217 countries spanning a period of 20 years; 1993 to 2012. We analyzed the data using multiple regression models. We concluded food production, renewable energy consumption, air transport, mobile cellular subscriptions, literacy rate, and population growth have the greatest impact on predicting greenhouse gas (GHG) emissions in our model, suggesting the demographic with the greatest carbon footprint are wealthy, educated people living in urban centers.\",\"PeriodicalId\":268438,\"journal\":{\"name\":\"STEM Fellowship Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM Fellowship Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17975/sfj-2019-009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM Fellowship Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17975/sfj-2019-009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是确定预测人均温室气体排放量的因素,并确定碳足迹最大的人口统计数据。社会经济趋势和温室气体排放之间的关系是有争议的,因为许多过去的研究只评估了一个因素。我们分析了全球人均温室气体排放量与识字率、人均GDP、城市人口百分比、青少年生育率、失业率、农业用地百分比、研发支出、可再生能源消费、粮食生产、人口增长、移动电话用户、航空运输货运和森林面积之间的关系。我们从217个国家收集了20年的数据;1993年到2012年。我们使用多元回归模型对数据进行分析。我们得出的结论是,在我们的模型中,粮食生产、可再生能源消费、航空运输、移动电话用户、识字率和人口增长对温室气体(GHG)排放的预测影响最大,这表明碳足迹最大的人口是生活在城市中心的富裕、受过教育的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study into the Demographics Having the Greatest Carbon Footprint
Our aim was to determine factors predicting greenhouse gas emissions per capita and to identify the demographics having the greatest carbon footprint. The relationship between socioeconomic trends and greenhouse gas emissions is controversial, given that many past studies evaluated only a single factor. We analyzed the relationship between global greenhouse gas emissions per capita and literacy rate, GDP per capita, urban population percentage, adolescent fertility rate, unemployment percentage, percent of agricultural land, research and development expenditure, renewable energy consumption, food production, population growth, mobile cellular subscriptions, air transport freight, and forest area. We gathered data from 217 countries spanning a period of 20 years; 1993 to 2012. We analyzed the data using multiple regression models. We concluded food production, renewable energy consumption, air transport, mobile cellular subscriptions, literacy rate, and population growth have the greatest impact on predicting greenhouse gas (GHG) emissions in our model, suggesting the demographic with the greatest carbon footprint are wealthy, educated people living in urban centers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信