{"title":"空间数据库技术在其他领域的应用:以Top-k和计算几何算子为例","authors":"K. Mouratidis","doi":"10.1145/3210272.3226094","DOIUrl":null,"url":null,"abstract":"In this seminar, we will explore how processing rich spatial data is not the only practical (and research-wise promising) application domain for traditional spatial database techniques. An equally promising direction, possibly with low-hanging fruits for research innovation, may be to apply the spatial data management expertise of our community to non-spatial types of queries, and to extend standard, more theoretical operators to large scale datasets with the objective of practical solutions (as opposed to favorable asymptotic complexity alone). As a case study, we will review spatial database work on top-k-related operators (i.e., non-spatial problems) and how it integrates fundamental computational geometric operators with spatial indexing/pruning to produce efficient solutions to practical problems.","PeriodicalId":106620,"journal":{"name":"Proceedings of the Fifth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","volume":"427 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying Spatial Database Techniques to Other Domains: a Case Study on Top-k and Computational Geometric Operators\",\"authors\":\"K. Mouratidis\",\"doi\":\"10.1145/3210272.3226094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this seminar, we will explore how processing rich spatial data is not the only practical (and research-wise promising) application domain for traditional spatial database techniques. An equally promising direction, possibly with low-hanging fruits for research innovation, may be to apply the spatial data management expertise of our community to non-spatial types of queries, and to extend standard, more theoretical operators to large scale datasets with the objective of practical solutions (as opposed to favorable asymptotic complexity alone). As a case study, we will review spatial database work on top-k-related operators (i.e., non-spatial problems) and how it integrates fundamental computational geometric operators with spatial indexing/pruning to produce efficient solutions to practical problems.\",\"PeriodicalId\":106620,\"journal\":{\"name\":\"Proceedings of the Fifth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"volume\":\"427 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210272.3226094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210272.3226094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying Spatial Database Techniques to Other Domains: a Case Study on Top-k and Computational Geometric Operators
In this seminar, we will explore how processing rich spatial data is not the only practical (and research-wise promising) application domain for traditional spatial database techniques. An equally promising direction, possibly with low-hanging fruits for research innovation, may be to apply the spatial data management expertise of our community to non-spatial types of queries, and to extend standard, more theoretical operators to large scale datasets with the objective of practical solutions (as opposed to favorable asymptotic complexity alone). As a case study, we will review spatial database work on top-k-related operators (i.e., non-spatial problems) and how it integrates fundamental computational geometric operators with spatial indexing/pruning to produce efficient solutions to practical problems.